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PREM CHANDRA (%)

Absolute Riesz Summabitity Factors

of Fourier Series. (*%)

1. - Definitions and notations.

Let A= Aw) be a differentiable, monotonic increasing, function of w,
tending to infinity with w. For a given infinite series Ya,, we write

A (w) = 3 {AMw) — An)} a, (r>0).

nLw

The series > a, is summable |R, 3, 7|, >0, if

1A | < oo,

where 4 is a positive number. (1)

Now, for r>0, m<w<<m+1,

r (w)

{/(w)}r-H z {)" (w) — /1(%)}7"1 An)a

d%; [A.(w)[{Aw)} ] =

(*) Indirizzo: Department of Mathematics, Govt. Science College, Jabalpur, India.

(**) This is base on Chapter V of the author’s Ph. D. Thesis entitled « Absolute

Summability » submitted in the University of Jabalpur (1968). — Ricevuto: 15-X-1970.
(1) OBrRECHKOFF [6], [7].
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Hence, the series Y a, is said to be summable |R, 4, 7| (r>0), if

@

7 A (w) ! z {l(@u) — )-(’n)}ral Aln) &, i dew

{Z(w )}T.H K w
4

is convergent.
Evidently summability |R, 4, 0] is equivalent to absolute convergence.
Let f(t) be a periodic function with period 27 and integrable (L) over
(— 7, 7). Without any loss of generality the constant term in the FOURIER
series of f(t) can be taken to be zero, so that

0

f(t) ~ > (@, cosnt + b, sinnt) = %-An(t) )

ne=1 ne==l

and

T

[fnyat=o.

Throughout this paper we use the following notations:

(1.1) e BV{(a, b) = is of bounded variation in (a, b),

(1.2) p(t) = 5 {flz+ )+ fla—1)},

| R

¢

(1.3) @ {8)=at™ [ (t —u)*e(uw)du (x>0}, |
(1.4) n(n) = (log (n + 1)) (log log (n + 2))7,
(1.5) e(w) = exp {logw loglogw} ,
(1.6) E(w, t) = > e(n)n(n) cosnt,
t R
(1.7 G{w, t) = fu (log log ;) a—uE(w, u) du,

1]

7t

k"1 2
(1.8) H(w, t) =fu (1og logi) a—uE(w, o) du.

t
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2. - Introduction.

Generalizing earlier theorems of MoHANTY (cf.[5]) and himself (cf.[8]),
in 1957 PaTt (cf. [9]) established the following theorem.

Theorem A. If o is an integer >1 and ¢,(¢)log(k/t)e BV(0, =), then
the FOURIER series of f(f), at ¢ =& is, summable |R, exp{(logw)*¥, a1 §],
for every 6> 0.

Extending Theorem A, SINHA (cf. [10]) proved the following theorem for
the ecase of integral «, where «>1. For the case of general positive «, the
Theorem B is due to Marsumoro [4], and has been generalised later, by MAL-
viva {3], by giving a wrong proof of Lemma 3.

Theorem B. If >0, >0 and ¢, (t){log (k/1)}*’ e BV(0, ), where k>
> exp(l + of), then the FOURIER series of f(t), at ¢t =@, is summable
IR, exp {(logw)'*?}, « + 6|, for every ¢>0.

In 1961, DixsHIT investigated the summability factors ¢, which can make
the series > A,.(z)e, summable |R, exp{(logw)*}, o], «>0, whenever the
condition ¢,(t) {log (k/t) }# € BV(0, ) is satisfied.

The present author [1] proved the following theorem:

Theorem C. If ¢ (t)loglog(k/t) e BV(0,7), then the FOURIER series of
f(t), at ¢ =, is summable |R, e(w), 14 5| (6> 0). :

In particular, taking «=f =1, and replacing log(kft) by loglog(kft) in
Theorem B, we answer the question: what possible factors, under the same
restrictions as in Theorem C with order 1 in place of 1-+8 in Theorem C,
can be obtained to make the series > A,(z)n(n) summable |R, e(w), 1|. We
pricisely prove the following )

Theorem. If @ (t)loglog(k/t)eBV(0,7), where k>me?, then > A.(®)n(n)
n=1
is summable |R, e(w), 1.

3. — We require the following order-estimates for the proof of the theorem:

(3.1) B(w, t) = O{w e(w) n(w)/(loglogw + 1)},
(3.2) E(w, t) = Ot e(w) n(w)}, k
(3.3) G{w, t) == O{WB w e(w) n(w) (loglogw - 1)“1} y

(3.4)  H(w, 1) = Oflog(kft) e(w) n(w)} .
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Proof of (31). Let m<w<m 41, and let A(1)=1 and A@®n)=c(n),
for n>2. Then

m
= Y e(n) n(n) cosnt

EEeS

ii (n) n(n)}

m

1) +0{> e(n) n(n)} ,

n=gq
where ¢ is an integer such that

n m

> e(n) n(n) < f n(x) dz -+ e(m) nim) ,

n=q

so that

n

> e(n) n{n) =

n=q

= 0 {w n(w) (log log w+1)“1f1~9§—10ii{_—} e(x) dw} + O{e(w) n(w)}

= Ofw ¢(w) 7(w) (log logw -+ 1)~} + Ofe(w) n(w)}
= O{w e(w) n(w) (loglogw -+ 1)7%} .
Hence, finally, we have
B(w, t) = O{w e(w) n(w) (loglogw + 1)~} .

Proof of (3.2). Let m <w<m-41, and let A1) =1 and A(n)=e(n),
for n>2. Then

m

E(w, t) = > e(n) n(n) cosnt
Rl
»—1 n

= (X + X )(etn)nn) cosnt)

=R+ 8, 82y,
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where p is an integer such that e(n) n(n) is steadily increasing for n>p.
Now, we have B = 0(1) and, by ABEL’s lemma, we have

n

S = e(m) n(m) |3 cosnt| (p< p'<m)

n=o!

= Ot~ e(w) n(w)}.

Proof of (3.3). By the second mean value theorem, we have
13

-t (8
G(w, t) = t(log log;) J@E(w, u) du < t/<?)

'

k1
=1 (log log -t—) (B(w, t) — B(w, 1))

=0 {t (1og log iﬁ)—lw e(w) n{w) (loglogw + 1)‘1} s
by (3.1).

Proof of (3.4). Integrating by parts, we have

T

Hw, t) = [@ (log log :—j)_l E(w, fu)}

¢

AN k1 k& “21 ;
— f{(log log;) -+ (log ;) (1og log ;)) J E(w, v)dv

12

r

= 0 { (log log -?)—Ie(w) n(w)} -+ 0 {e(w) n(w)f Pt (log logg)_l dv}

‘ (by (3.2))
= 0 {log% e(w) n(w)} .
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4. — For the proof of the theorem we shall require the following lemmas:

Lemma 1 (*). If 3a, is summable |R, Any 7]y >0, then it is also
summable |R, A, 7'], #' >,

Lemma 2. The Fourier series of the even function (loglog|k[t])—*
(k>me?), defined outside (— g, 7) by periodictty is absolutely convergent at = 0.

Proof. XLet

(log log |kft])"t~ 3 «, cosn t,

where

4

2
o= = f (cos nt/log log (k/1)) dt

0
= O{n~*(log n)~*(log log n)~%} ,

by using the arguments used in MoHANTY ([5], lemma 6). And hence the
Lemma follows.

Lemma 3. The Fourier series of the even function (log|kfe])—.
(loglog|kft|)—2, defined outside (—m, 7) by periodicity, is absolutely convergent,
at t=20. : )

Proof. Proof is parallel to that used by MoHANTY in his lemma 6 of [5].

Lemma 4. The integral

=]

I = f ¢ Hw) w* (loglogw + 1)~ |Gw, =) | dw < oo .

e?

Proof. Integrating by parts, we have
@ log log Y| " & sy 2 (o [1og 1 a
T) = - — — o ;o
(w, m) = 7z | log 0g ~ (w, ) (w, u) 5o % | log og %
0

= Ofe(w) n(w)} + 0{ 3 e(n) n(n) B.}, (by (3.2));

nKw

(*) OBrEcHKOFF [6], [7].
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7T

, kYt k\~t k=2
ﬂnzf[(log 1og;) -+ (log ;) (log log;) ]cos nt dt=

25 (an+ﬂn)7

o

o, and B, are as defined in Lemma 2 and Lemma 3, respectively. Hence by
Lemma 2 and Lemma 3, we have

B, = 0{n=1 (log (n +1))~* (log log (n + 2))-2} .
Therefore
I=0{ ﬁu*l (log w)~2 (1 -+ (log log w)™) dw} +

+ 0{ [ertw) wt (loglogu+1) | 3 e(w) nn) fa] du}
= 0(1), =

by the convergence of the first integral and, since > n(n) B is absolutely con-
n=1

vergent, the second integral is also convergent by Lemma 1. Hence the proof
of the Lemma follows.

5. — Proof of the Theorem. Since,

T

2
A () = - f @(t) cos nt dt,

0

integrating by parts and using the fact ¢,(w) =0, we have

k3

2
A, (2) = - fnt i(t) sinnt di

0

T |3

2 I )
= — = f d {%(t) loglog Z} f (nv sinnwv/log log;) dw

o 0

(integrating by parts).
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The series 3 A4,(x) n(n) is summable |R, e(w), 1] if

n=1

I =

fe"l(w) w™t (log logw--1) | ¥ e(n) n(n)-

nE=W

Qe
e

2

’ k %
. J d {(pl(t) log log -t-} f (nv sinnv/log log ;) dw

dw,
¢ o
is convergent. But
4 d I 3
I< - f I d {(pl(t) log'log t—} ’ f e~ Hw) w (log log w-+1) | G(w, ) |dw .
0 o
Therefore, since
3 k
f‘d{(pl(t) log 10g;}[< 0,
[}
for the proof of the Theorem, it is sufficient to show that
J = [ew) w* (loglog w+1)|G(w, t)|dw = 0(1),
uniformly in 0 <t<<m.
On writing 7 = kft,
'J:Ef...—{—‘f...:Jl—}— Js, say.
By (3.3),
Jy = 0(1)

And using the fact
. G(w, t) = G(w, ) — H(w, 1),
we have

Ja<

ﬂ;as

e H(w) w* (log log w-+1) |G(w, 7) | dw -+

-+ Te“l(w) w™ (log log w—1) | H(w, 1) |[dw = Jy; + Jpy ;- say.
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Now

Jo1 < fe‘l(w) wt (log log w-+1) |G(w, =) |dw = O(1),

by Lemma 4. And, by (3.4),

E [
=0 {log; f w* (log w)~* (1+4(log log w)—l)dw} = 0(1),

T

uniformly in 0 <t<<m.
This completes the proof of the Theorem.
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