S. M. MAZHAR (*)

On the Absolute Nörlund Summability of a Series Associated with a Fourier Series. (**)

In this paper absolute Nörlund summability of a series associated with a Fourier series has been studied. These results include, as a special case, a theorem of the author [2], which is a generalization of a result of Mohanty and Mohapatra [3].

1. – Let f(t) be integrable (L) over $(-\pi, \pi)$ and periodic with period 2π and let

$$f(t) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt) \equiv \sum_{n=0}^{\infty} A_n(t) .$$

Numbers x and s being fixed, we write

$$\begin{split} &\varphi(t) &= (1/2)\{f(x+t) + f(x-t) - 2s\}\,,\\ &\varPhi_\alpha(t) = \frac{1}{\varGamma(\alpha)} \int\limits_0^t (t-u)^{\alpha-1} \varphi(u) \,\mathrm{d}u & (\alpha>0)\,,\\ &\varphi_\alpha(t) = \varGamma(\alpha+1) \,t^{-\alpha} \,\varPhi_\alpha(t)\,, \qquad \varphi_0(t) = \varphi(t)\,,\\ &s_n &= \sum_{k=0}^n A_k(x)\,. \end{split}$$

^(*) Indirizzo: Department of Mathematics, Faculty of Engineering, A.M.U., Aligarh-3, India.

^(**) Ricevuto: 14-XII-1970.

2. - Generalizing a result of Mohanty and Mohapatra [3], the author [2] has recently obtained the following theorem.

Theorem A. If

(2.1)
$$\int_{a}^{\pi} \frac{|\varphi_{\alpha}(t)|}{t} dt < \infty \qquad (\alpha \geqslant 0),$$

then the series

$$(2.2) \Sigma(s_n - s)/n$$

is summable $[C, \beta], \beta > \alpha$.

The object of this Note is to study the corresponding problem for $|N, p_n|$ summability.

We prove the following theorems. In what follows we assume that $p_n \ge 0$.

Theorem 1. Let $\{p_n\}$ be a non-increasing sequence of numbers such tha

(2.3)
$${R_n} \equiv \left\{\frac{(n+1)}{P_n} p_n\right\} \in B.V.,$$

(2.4)
$$\frac{P_k}{k^{\alpha}} \sum_{n=k}^{\infty} \frac{n^{\alpha}}{(n+1)P_n} \leqslant C \, (1) \qquad (k=1, 2, ...; \quad 0 \leqslant \alpha < 1) \, .$$

If the condition (2.1) holds, then the series (2.2) is summable $|N, p_n|$ (2).

Theorem 2. Suppose (2.3) holds and

(2.5)
$$P_{k} \sum_{n=k}^{\infty} \frac{1}{(n+1)P_{n}} \leqslant C \qquad (k=1,2,...),$$

$$(2.6) \frac{n}{P_n} \sum_{k=0}^{n} |\Delta p_k| \leqslant C.$$

If (2.1) holds, $0 \le \alpha < 1$, then the series (2.2) is summable $[N, p_n]$.

⁽¹⁾ C is a constant not necessarily the same at each occurrence.

⁽²⁾ We use here standard notations for Nörlund summability.

Theorem 3. If

(2.7)
$$\int_{0}^{\pi} \frac{|\varphi_{1}(t)|}{t} dt < \infty,$$

then the series (2.2) is summable $|N, p_n|$, where $\{p_n\}$ is a non-decreasing sequence of numbers such that (2.3) holds and

(2.9)
$$\{p_{n+1}-p_n\}$$
 is ultimately monotonic.

3. - The following lemmas will be required for the proof of our theorems.

Lemma 1 [1]. If $\int_{0}^{\pi} (|\varphi_{\alpha}(t)|/t) dt < \infty$, then $\int_{0}^{\pi} (|\varphi_{\beta}(t)|/t) dt < \infty$, where $\beta > \alpha > 0$.

Lemma 2. If (2.7) holds, then a necessary and sufficient condition for the series (2.2) to be summable $|N, p_n|$ is that

$$(3.1) \qquad \sum_{n=1}^{\infty} \frac{1}{n+1} |\sigma_n(x)| < \infty,$$

where $\sigma_n(x) = (1/P_{n-1}) \sum_{k=1}^n p_{n-k}(s_k - s)$ and the sequence $\{p_n\}$ satisfies the conditions (2.3) and (2.5).

Proof of Lemma 2. Let

$$t_n = \frac{1}{P_n} \sum_{k=0}^n P_{n-k} \frac{s_k - s}{k+1},$$

then

$$t_n - t_{n-1} = \frac{\sigma_n(x)}{n+1} + \frac{1}{(n+1)P_{n-1}} \sum_{k=0}^{n-1} \frac{R_k - R_n}{n-k} P_k(s_{n-k} - s).$$

Thus to establish the Lemma it is sufficient to show that

$$(3.2) \sum_{1}^{\infty} \frac{1}{(n+1)P_{n-1}} \left| \sum_{k=0}^{n-1} \frac{R_k - R_n}{n-k} P_k(s_{n-k} - s) \right| < \infty.$$

Now, putting $D_k(t) = \{\sin(k + \frac{1}{2})t\}/\{2\sin(t/2)\}$, we have

$$\sum_{k=0}^{n-1} \frac{R_k - R_n}{n - k} P_k(s_{n-k} - s) = \frac{2}{\pi} \int_{0}^{\pi} \varphi(t) \sum_{k=0}^{n-1} \frac{R_k - R_n}{n - k} P_k D_{n-k}(t) dt =$$

$$=\frac{1}{\pi}\varPhi_1(\pi)\sum_{k=0}^{n-1}(-1)^{n-k}\frac{R_k-R_n}{n-k}P_k-\frac{2}{\pi}\int\limits_0^\pi\frac{\varphi_1(t)}{t}\sum_{k=0}^{n-1}\frac{R_k-R_n}{n-k}P_k\left\{t^2\frac{\mathrm{d}}{\mathrm{d}t}D_{n-k}(t)\right\}\,\mathrm{d}t\;.$$

It is therefore sufficient to prove that

(3.3)
$$\sum_{n=1}^{\infty} \frac{1}{n+1} \frac{1}{P_{n-1}} \left| \sum_{k=0}^{n-1} (-1)^k \frac{R_k - R_n}{n-k} P_k \right| < \infty,$$

$$(3.4) \qquad \sum_{n=1}^{\infty} \frac{1}{(n+1)P_{n-1}} \left| \sum_{k=0}^{n-1} \frac{R_k - R_n}{n-k} P_k \left\{ t^2 \frac{\mathrm{d}}{\mathrm{d}t} D_{n-k}(t) \right\} \right| < \infty,$$

uniformly in $0 < t < \pi$.

Proof of (3.3). We have on applying ABEL's transformation

$$\begin{split} \sum_{n=1}^{\infty} \frac{1}{(n+1)P_{n-1}} \left| \sum_{k=0}^{n-1} (-1)^k \frac{(R_k - R_n) P_k}{n-k} \right| &= \\ &= \sum_{n=1}^{\infty} \frac{1}{(n+1)P_{n-1}} \left| \sum_{k=0}^{n-1} \Delta R_k \sum_{\nu=0}^k (-1)^{\nu} \frac{P_{\nu}}{n-\nu} \right| &\leq \\ &\leq \sum_{k=1}^{\infty} |\Delta R_k| P_k \sum_{n=k+1}^{\infty} \frac{1}{(n+1)P_{n-1}} < \sum_{k=1}^{\infty} |\Delta R_k| < \infty \,, \end{split}$$

by virtue of the conditions (2.3) and (2.5).

Proof of (3.4). Let $m = \lfloor n/2 \rfloor$ and $\tau = \lfloor \pi/t \rfloor$. Then the left hand side expression of (3.4) is

$$\leq \sum_{n \leq \tau} \frac{1}{(n+1)P_{n-1}} \left| \sum_{k=0}^{m-1} \dots \right| + \sum_{n \geq \tau} \frac{1}{(n+1)P_{n-1}} \left| \sum_{k=0}^{m-1} \dots \right| + \sum_{n \leq \tau} \frac{1}{(n+1)P_{n-1}} \left| \sum_{k=0}^{m-1} \dots \right| = \Sigma_1 + \Sigma_2 + \Sigma_3, \quad \text{say.}$$

Now

$$\Sigma_1 \leqslant C \sum_{n \leqslant \tau} \frac{1}{(n+1)P_{n-1}} \sum_{k=0}^{m-1} t P_k \leqslant t \sum_{n \leqslant \tau} 1 = O(1).$$

Applying ABEL's transformation to the inner sum of Σ_2 and using the facts that $\{P_k/(n-k)\}$ is monotonic non-decreasing with respect to k for k < n and

$$t^2 \sum_{\nu=0}^k \frac{\mathrm{d}}{\mathrm{d}t} D_{n-\nu}(t) = O(n) + O(1/t)$$
,

we have

$$\begin{split} \mathcal{E}_2 \leqslant & \sum_{n > \tau} \frac{1}{(n+1)P_{n-1}} \sum_{k=0}^{m-2} |\varDelta R_k| \, \frac{P_k}{n-k} \left\{ O(n) + O(1/t) \right\} + \\ & + \sum_{n > T} \frac{1}{(n+1)P_{n-1}} \, |R_{m-1} - R_n| \, \frac{P_{m-1}}{n-m+1} \left\{ O(n) + O(1/t) \right\} \\ &= O\left(\sum_{n > T} \frac{1}{(n+1)P_{n-1}} \sum_{k=0}^{n-1} P_k |\varDelta R_k| \right) + O\left(\sum_{n > T} \frac{1}{n+1} \left| \sum_{v=m-1}^{n-1} \varDelta R_v \right| \right) \\ &= O(1) + O\left(\sum_{n=1}^{\infty} \frac{1}{n+1} \sum_{v=m-1}^{n-1} |\varDelta R_v| \right) = O(1) + O\left(\sum_{v=1}^{\infty} |\varDelta R_v| \right) = O(1) \, . \end{split}$$

Again

$$\begin{split} & \mathcal{L}_{3} \! \leqslant \! \sum_{n=1}^{\infty} \frac{1}{(n+1)P_{n-1}} \sum_{k=m}^{n-1} \! \left| \varDelta R_{k} \right| \cdot \left| \sum_{\nu=m}^{k} \frac{P_{\nu}}{n-\nu} \, t^{2} \, \frac{\mathrm{d}}{\mathrm{d}t} \, D_{n-\nu}(t) \right| \\ & \leqslant C \! \sum_{n=1}^{\infty} \frac{1}{(n+1)P_{n-1}} \sum_{k=m}^{n-1} \! P_{k} \! \left| \varDelta R_{k} \right| \leqslant C \! \sum_{n=1}^{\infty} \frac{1}{n+1} \sum_{k=m}^{n-1} \! \left| \varDelta R_{k} \right| = O(1) \; . \end{split}$$

This completes the proof of the Lemma.

Lemma 3. Let

$$g(n, t) = \frac{2}{\pi P_{n-1}} \sum_{k=1}^{n} p_{n-k} D_k(t)$$
.

Then, for all t and all non-negative sequence $\{p_n\}$,

$$g(n, t) = O(n),$$

$$\frac{\mathrm{d}}{\mathrm{d}t} g(n, t) = O(n^2).$$

Also:

(a) if $\{p_n\}$ is non-increasing sequence of non-negative numbers, then

$$g(n,t) = O\left(\frac{P_{\lfloor 1/t\rfloor}}{tP_{n-1}}\right), \qquad \frac{\mathrm{d}}{\mathrm{d}t}\,g(n,t) = O\left(\frac{n\,P_{\lfloor 1/t\rfloor}}{t\,P_{n-1}}\right);$$

(b) if $\{p_n\}$ is non-negative sequence satisfying (2.3) and (2.6), then

$$g(n, t) = O\left(\frac{1}{n t^2}\right), \qquad \frac{\mathrm{d}}{\mathrm{d}t}g(n, t) = O\left(\frac{1}{t^2}\right).$$

The proof is quite simple.

Lemma 4. Let

$$F(n, u) = \int_{u}^{\pi} (t - u)^{-\alpha} \frac{\mathrm{d}}{\mathrm{d}t} g(n, t) \, \mathrm{d}t, \qquad 0 \leqslant \alpha < 1.$$

If condition (a) of Lemma 3 is satisfied, then

$$F(n, u) = \left\{ egin{array}{ll} O(n^{lpha+1}) \; , & 0 < u \leqslant n^{-1} \ \\ O\left(rac{n^{lpha} \; P_{[1/u]}}{u \; P_{n-1}}
ight) \; , & n^{-1} < u < \pi \; , \end{array}
ight.$$

while, if condition (b) of Lemma 3 is satisfied,

$$F(n,\,u) = egin{cases} O(n^{lpha+1}) \;, & 0 < u \leqslant n^{-1}, \ O(n^{lpha-1}/u^2) \;, & n^{-1} < u < \pi \;. \end{cases}$$

Proof of Lemma 4. Let

$$F(n, u) = \int_{u}^{u+(1/n)} ... + \int_{u+(1/n)}^{\pi}$$

Applying mean value theorem and Lemma 3, the result follows.

4. - Proof of Theorem 1. By virtue of Lemmas 1 and 2 and the fact that $(2.4) \Rightarrow (2.5)$, it is sufficient to show that

$$\sum_{n=1}^{\infty} \frac{1}{n+1} |\sigma_n(x)| < \infty.$$

Now

$$\sigma_n(x) = \int_0^{\pi} \varphi(t) \, g(n, t) \, \mathrm{d}t = [\Phi_1(t) \, g(n, t)]_0^{\pi} - \int_0^{\pi} \Phi_1(t) \, \frac{\mathrm{d}}{\mathrm{d}t} \, g(n, t) \, \mathrm{d}t =$$

$$= \frac{C}{P_{n-1}} \sum_{k=1}^{n} (-1)^{k} p_{n-k} - \frac{1}{\Gamma(1-\alpha)} \int_{0}^{\pi} \Phi_{\alpha}(u) du \int_{u}^{\pi} (t-u)^{-\alpha} \frac{d}{dt} g(n,t) dt.$$

Thus in view of (2.1) it is sufficient to prove that

(4.1)
$$\sum_{n=1}^{\infty} \frac{1}{(n+1)P_{n-1}} \mid \sum_{k=1}^{n} (-1)^k p_{n-k} \mid < \infty,$$

$$(4.2) \qquad \sum_{n=1}^{\infty} \frac{u^{\alpha+1}}{n+1} |F(n,u)| < \infty,$$

uniformly in $0 < u < \pi$.

Proof of (4.1). We have

$$\sum_{k=1}^{n} (-1)^{k} p_{n-k} = O(\sum_{\nu=0}^{n-2} |\Delta p_{\nu}|) + O(1)$$

and hence

$$\begin{split} &\sum_{n=1}^{\infty} \frac{1}{(n+1)P_{n-1}} \mid \sum_{k=1}^{n} (-1)^k p_{n-k} \mid = O\left(\sum_{n=1}^{\infty} \frac{1}{(n+1)P_{n-1}} \sum_{\nu=0}^{n-2} |\varDelta p_{\nu}|\right) + O(1) \\ &= O\left(\sum_{\nu=1}^{\infty} |\varDelta p_{\nu}| \sum_{n=\nu+2}^{\infty} \frac{1}{(n+1)P_{n-1}}\right) + O(1) = O\left(\sum_{\nu=1}^{\infty} \frac{|\varDelta p_{\nu}|}{P_{\nu+1}}\right) + O(1) = O(1) \;, \end{split}$$

by virtue of the condition (2.3).

Proof of (4.2). We have

$$\begin{split} \sum_{n=1}^{\infty} \frac{u^{\alpha+1}}{n+1} \left| F(n, u) \right| &\leq C \sum_{n \leq u^{-1}} \frac{u^{\alpha+1} n^{\alpha+1}}{n+1} + C \sum_{n > u^{-1}} \frac{u^{\alpha+1}}{n+1} \cdot n^{\alpha} \frac{P_{[1/u]}}{u P_{n-1}} \\ &\leq C + C u^{\alpha} P_{[1/u]} \sum_{n=[1/u]+1}^{\infty} \frac{n^{\alpha}}{(n+1) P_{n-1}} = O(1) \end{split}$$

uniformly in $0 < u < \pi$, by virtue of the condition (2.4).

This completes the proof of Theorem 1.

5. – Proof of Theorem 2. In the proof of Theorem 1 upto (4.1) we have used only two conditions namely (2.3) and (2.5) of Theorem 2. It is therefore sufficient to prove (4.2). Applying Lemma 4 we have

$$\begin{split} \sum_{n=1}^{\infty} \frac{u^{\alpha+1}}{n+1} \left| F(n, u) \right| &\leq C \sum_{n \leq u^{-1}} \frac{u^{\alpha+1}}{n+1} n^{\alpha+1} + C \sum_{n > u^{-1}} \frac{u^{\alpha+1}}{n+1} \frac{n^{\alpha-1}}{u^2} = \\ &= O(1) + O\left(\sum_{n > u^{-1}} u^{\alpha-1} n^{\alpha-2}\right) = O(1) \;, \end{split}$$

uniformly in $0 < u < \pi$.

This proves Theorem 2.

6. - Proof of Theorem 3. It is obvious that $(2.8) \Rightarrow (2.5)$ and hence by virtue of Lemma 2 it is sufficient to prove that

$$\sum_{n=1}^{\infty} \frac{1}{n+1} |\sigma_n(x)| < \infty.$$

As in the proof of Theorem 1

$$\sigma_n(x) = \frac{C}{P_{n-1}} \sum_{k=1}^n (-1)^k p_{n-k} - \int_0^\pi \Phi_1(t) \frac{\mathrm{d}}{\mathrm{d}t} g(n, t) \, \mathrm{d}t.$$

Since (4.1) is true under the conditions (2.3) and (2.8), it is sufficient by virtue of the hypothesis to prove that

(6.1)
$$\sum_{n=1}^{\infty} \frac{t^2}{n+1} \left| \frac{\mathrm{d}}{\mathrm{d}t} g(n,t) \right| < \infty$$

uniformly in $0 < t < \pi$. We have

$$\frac{\mathrm{d}}{\mathrm{d}t} \; g(n,t) = \frac{2}{\pi \, P_{n-1}} \; \sum_{k=1}^n \left(p_{n-k} - p_{n-k-1} \right) \sum_{\nu=0}^k \; \frac{\mathrm{d}}{\mathrm{d}t} \; D_{\nu}(t) \; .$$

Writing the sum in (6.1) as

$$\Sigma = \sum_{n \leq 1/t} ... + \sum_{n>1/t} ... = L_1 + L_2$$
,

we have

$$L_1 \leqslant C \sum_{n \leqslant 1/t} \frac{t^2}{(n+1)\,P_{n-1}} \, \sum_{k=1}^n \left(p_{n-k} - p_{n-k-1} \right) \, \frac{n^2}{t} \leqslant C \, t \, \sum_{n \leqslant 1/t} \frac{n \, p_{n-1}}{P_{n-1}} \leqslant C \, .$$

Let m_0 be a constant such that $\{p_n-p_{n-1}\}$ is monotonic for $n>m_0$. Then

$$\begin{split} L_2 &\leqslant C \sum_{n \geq 1/t} \frac{t^2}{(n+1) \, P_{n-1}} \left| \sum_{k=1}^{n-m_0-1} \left(p_{n-k} - p_{n-k-1} \right) \sum_{\nu=0}^k \frac{\mathrm{d}}{\mathrm{d}t} \, D_{\nu}(t) \right| + \\ &+ C \sum_{n \geq 1/t} \frac{t^2}{(n+1) \, P_{n-1}} \left| \sum_{k=n-m_0}^n \left(p_{n-k} - p_{n-k-1} \right) \sum_{\nu=0}^k \frac{\mathrm{d}}{\mathrm{d}t} \, D_{\nu}(t) \right| \\ &= L_{21} + L_{22} \,, \qquad \text{say}. \end{split}$$

By virtue of the fact that

$$\sum_{n=1}^{\infty} (1/P_n) < \infty,$$

we observe that

$$L_{22}\!\leqslant\! C\, \sum_{n>1/t} \frac{t^2}{(n+1)\, P_{n-1}}\, \frac{n}{t^2}\!\leqslant\! C\, \sum_{n>1/t} \frac{1}{P_{n-1}}\!\leqslant\! C\;.$$

We now proceed to show that $L_{21} \leqslant C$.

Case (i). Let $\{p_n-p_{n-1}\}$ be monotonic non-decreasing for $n>m_0$. Since

(6.2)
$$\sum_{k=1}^{n-m_0-1} (p_{n-k}-p_{n-k-1}) \sum_{\nu=0}^k \frac{\mathrm{d}}{\mathrm{d}t} D_{\nu}(t) = O\left(\frac{n}{t^3}\right) (p_n-p_{n-1}),$$

we have

$$\begin{split} L_{21} &= O\bigg(\sum_{n \geq 1/t} \frac{t^2}{(n+1)\,P_{n-1}} \, \frac{n}{t^3} \, (p_n - p_{n-1})\bigg) = O\bigg(\frac{1}{t} \sum_{n \geq 1/t} \frac{p_n - p_{n-1}}{P_{n-1}}\bigg) = \\ &= O\bigg(\frac{1}{t} \sum_{n \geq 1/t} \frac{1}{n} \, \left| \, \varDelta\bigg(\frac{n\,p_{n-1}}{P_{n-1}}\bigg) \, \right| \, \bigg) + \, O\bigg(\frac{1}{t} \sum_{n \geq 1/t} \frac{1}{n^2}\bigg) = O(1) \; . \end{split}$$

Case (ii). Suppose $\{p_n-p_{n-1}\}$ is monotonic non-increasing. In this case the expression in (6.2) is $O((n/t^2)p_{[1/t]})$. Hence

$$\begin{split} L_{21} &= O\left(\sum_{n>1/t} \frac{t^2}{(n+1)P_{n-1}} \, \frac{n}{t^2} \, p_{[1/t]} \, \right) = \\ &= O\left(p_{[1/t]} \sum_{n>1/t} \frac{1}{P_{n-1}}\right) = O\left(\frac{[1/t] \, p_{[1/t]}}{P_{[1/t]}}\right) = O(1) \, , \end{split}$$

uniformly in $0 < t < \pi$.

This proves Theorem 3.

7. – It is evident that if $\{p_n\}$ is non-decreasing sequence satisfying (2.3), then (2.6) holds. Also (2.4) \Rightarrow (2.5). Thus we deduce the following theorem.

Theorem 4. Let $\{p_n\}$ be any monotonic sequence of non-negative numbers such that (2.3) and (2.4) hold. If (2.1) holds, then the series (2.2) is summable $|\mathbf{N}, p_n|$.

It is clear from our theorems that summability $|N, p_n|$ of $\Sigma(s_n - s)/n$ is a local property of the generating function.

References.

- [1] L. S. Bosanquet, Absolute summability (A) of Fourier series, Proc. Edingburgh Math. Soc. (2) 4 (1934-36), 12-17.
- [2] S. M. Mazhar, On the absolute convergence of a series associated with a Fourier series, Math. Scand. 21 (1967), 90-104.
- [3] R. Mohanty and S. Mohapatra, On the absolute convergence of a series associated with a Fourier series, Proc. Amer. Math. Soc. 7 (1956), 1049-1053.

* * *