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S. M. MAzZzHAR (%)

On the Absolute Nérlund Summability

of a Series Associated with a Fourier Series. (*¥)

In this paper absolute NORLUND summability of a series associated with
a POURIER series has been studied. These results include, as a special case,
a theorem of the author [2], which is a generalization of a result of MoBANTY
and MoHAPATRA [3].

1. — Let f(?) be integrable (L) over (—m, ) and periodic with period 2z
and let

F(8) ~ % -+ i (@, cosnt 4 b, sin nt) = > AL .
n=1
Numbers # and s being fixed, we write
p(t) = 12){f(= + ) + flo — 1) — 25},
i
1 s
D.(t) = T f (t —w)* p(u) du (¢ >0),
0

Pu(t) = e+ 117D (1),  @olt) = 9(t),

(*) Indirizzo: Department of Mathematics, Faculty of Engineering, AM.U.,
Aligarh-3, India.
(**) Ricevuto: 14-X11-1970.
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2. — Generalizing a result of MoEANTY and MoHAPATRA [3], the author [2]
has recently obtained the following theorem.

Theorem A. If
(2.1) f‘j—%@ldt< o) (>0),
1]

then the series
(2.2) 2(8, — 8)[n

is summable |C, 3], B>«

The object of this Note is to study the corresponding problem for |N, p,|
summability.
We prove the following theorems. In what follows we assume that p,>0.

Theorem 1. Let {p.} be a non-increasing sequence of numbers such tha

(n+1)
(2.3) {R.} = { - pn} eB.V.,
P, & "n“
(2.4) ﬁﬂakm<0(1) (k=1,2,...; O<a<1).

If the condition (2.1) holds, then the series (2.2) is summable N, p.| (3.

Theorem 2. Suppose (2.3) holds and

o

1
(2.5) P, ”gk RS ¢ k=1,2,..),

n
(2.6) : B

n ki

M=

|dp| < O.

0

If (2.1) holds, 0<a< 1, then the series (2.2) is summable N, p,|.

(1) C is a constant not necessarily the same at each occurrence.
(2) We use here standard notations for NORLUND summability.
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Theorem 3. If

[»I‘Plit” At < oo,

0.

—
o
-1

~—

then the series (2.2) is summable |N, p,|, where {p,} is & non-decreasing sequence
of numbers such that (2.3) holds and

(2.8) (Pifk) 3 (1[P,)<C t=1,2,..),
=
(2.9) {Pats — P} is ultimately monotonic.

3. — The following lemmas will be required for the proof of our theorems.

T

Lemma 1 (1] If f([q)a(t)[/t) dt < oo, then [(|@st)][t)dt < oo, where

0

f>ax=0.

Lemma 2. If (2.7) holds, then a mnecessary and sufficient condition for
the series (2.2) to be summable |N, p,| is that

@

(3.1) 2

i+ 1

loalz) | < o0,

where 6,(x) = (1/Pu_y) D Pu_i(si—S) and the sequence {p,} satisfies the conditions
k=1

(2.3) and (2.5).

Proof of Lemma 2. Let

1 Z S — 8
t, = — P, . —
» P,.kgo e 1]

then

o,(T) 1 " R.—R,
Ty —tpy = e \Qn—f T .
T w1 + (4 1)P,, kgo n—k P (80— 5)

Thus to establish the Lemmsa it is sufficient to show that

= 1 "1 R,—R,
(3.2) 2 GT0Pn | & ek

Pk(sn—k—‘s) < 0.
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Now, putting D,(t) = {sin(k -+ 3)1}/{2 sin (¢/2)}, we have

Z it P.D nx(t) dt =

n—-—l

7
nol R . T Rﬂ 2 <
- Pk (Sn—k - S) - J
r=0

ey n—k
0

1 nZl R,—R, P(t)"I R, — R, d
— — NE o . 2 __ .
nq‘)l(n)k;)( 1) — P 7] p kgo — " P4t g Drer(®) @t

ki3
0

It is therefore sufficient to prove that

b . Pc RnP
(3.:3) 1 e
©® n—1 R . R" . d
(3.4) g (n + 1)Pn—1 o~ n—k P {t ;l_tD”—k(t)} l < 001

uniformly in 0 <t<<m.

Proof of (3.3). We have on applying ABEL’s transformation

S: = (____ )7» (Rk — Rn) PL .
ey (n 4+ 1)13,1_1 = n—k
& 1

2,
Sam 3

mo1 (0 + 1) Py |2 =0
< > |4AR|\ P, 3 ——-——--~—<Z|ARkl< o,
= f=k41 ( + 1 n—1 =1

=1

by virtue of the conditions (2.3) and (2.5).

Proof of (3.4). Let m=[n/2] and v = [xnft{]. Then the left hand side

expression of (3.4) is

1 m—1 m—1
<& mt )P, 2 JC; (n+ 1)P,._ o 1 +
+Z("7'+1)Pn-—1 = ’~2+2+23, say.
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Now

1 m—1

Z tP,<ty 1=0(1).

<y (0 + 1) Py 1< n<T

Applying ABEL’s transformation to the inner sum of 2, and using the
facts that {P,/(n—k)} is monotonic non-decreasing with respect to k for
k<n and

ot

™
M=
==y

—Dn—v(t) = 0(") -+ O(l/t) 9

we have

1 m-——2
S 4R

Z< X {O(n 4+ 0@+

n>rt (”ll + I)Pn*l Jo==

P, m—1

-R"l n—m+1

{0(n) + O(1[1)}

)

+ 2w 0P, 1>Pm o

n>T

1

=‘0(Z 5 P,;AR,1)+0(EM+1

nop (4 1) Pomy 550

zAR

y==m-—1

n=1 N +11m1

—om+o(35 S 4B ) = 0w+ 0 (3] 4R.|) =0

Again
© 1 n—1 k Pv . d
23<”=1 (n + I)Pn_l k_—;zmlARki ° v=zm "—u t (Tt-Dn-—v(t)

[~}

1 n—1 o
<0n§1 (4 1)Ppy k:zmpklARk n§:1 % z IARk! 1)

This completes the proof of the Lemma.

Lemma 3. Let

2 n
g(n, t) = =P z Pt Die(2) -

21l k=1
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Then, for all t and all non-negative sequence {p.},

d
g(n, 1) = O(n), 7 9 1) = O(n%) .

Also:

(a) if {p.} is non-increasing sequence of mon-negative nwmbers, then

— [P d _ " Bum) .
g(n, t)—o(tP—.,,—_l ’ a;g('n" 5)=0 1P, )’

(b) if {pn} is non-negative sequence satisfying (2.3) and (2.6), then

d
g(n, 1) = O(qlltg) s .d—tg(n’ t) = 0(%15) .

The proof is quite simple.

Lemma 4. ZLet

d d
F(n,u)::f(t—-u)‘“-(-ﬂ g(n, t)dt, O<a< 1,

12

If condition (a) of Lemma 3 is satisfied, then

O(not1) 0< u<n?
B(n, u) = “p
O(MJ Tl u<
wP,y )’ !

while, if condition (b) of Lemma 3 is satisfied,

O(n**ty, 0<u<nt,
F(n, u) =
O(n*"fu?), Nt u < 7.
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Proof of Lemma 4. Let

ut(1/n) E3
Fm,w)= [ ..+
u u+(1/n)

Applying mean value theorem and Lemma 3, the result follows.

4. — Proof of Theorem 1. By virtue of Lemmas 1 and 2 and the
fact that (2.4) = (2.5), it is sufficient to show that

i 1

e |on(m)]| < oo

Now

Jt

5.(0) = [ p(O) g, 181 =[D:(0) gln, Vs — f ®,(1) 5 gln, )2t =

0

T

0 n 1 7 A a
f==3 Y I . 4
Py kgl( 1) Pur Ti—w j@a(u) du J (t— u) P gn,t)dt.
0

Thus in view of (2.1) it is sufficient to prove that

[ee] 1 n
(4.1) 2’1 )P I S (— 1) pus | < 00,

k=1

1

uF+
n 41

(4.2) 21 | F(n, w)| < oo,
uniformly in 0 <u <.

Proof of (4.1). We have

S (1) pas = O( 3 14p,1) + O(1)

L=l ve=0
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and hence

-] 1 n L) 1 n—2
IS g = 1 54 el
2 mrnrn | 20 O(ngl RSP p"l) + o)

© o 1 © lllpl,]
=0(; |4p, | ":1%2 m) +0(1) = O(,z

=1 == Pv+1

) +0(1) = 0(1),

by virtue of the condition (2.3).

Proof of (4.2). We have

2, gt YL+l Tlas Py,
3 | P, )| <C S pe 14
ney -1 nsamr nF 1 aSar n 1 uP,

> ne
< 04 Cu*Ppyyy i ————= T |
+ [1/1112[”2“”1 TERTY (1)

uniformly in 0 < w < 7, by virtue of the condition (2.4).

This completes the proof of Theorem 1.

5. — Proof of Theorem 2. In the proof of Theorem 1 upto (4.1) we
have used only two conditions namely (2.3) and (2.5) of Theorem 2. It is
therefore sufficient to prove (4.2). Applying Lemma 4 we have

o x41 +1 et pe-1

> [ F(n,u)|<C 3 et L O

u
peq 41 n<gt B4 1 nSer + 1yl

=0(1) + 0( Y w102 = 0(1),

n>y=1

uniformly in 0<% << 7.

This proves Theorem 2.

6. — Proof of Theorem 3. It is obvious that (2.8) = (2.5) and hence
by virtue of Lemma 2 it is sufficient to prove that

o

2

A= 4 1

[o.(®) | < co.
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As in the proof of Theorem 1

oa(@) =

2(—1) pn_zﬂj P () 7 q(n 8 ds.

Since (4.1) is true under the conditions (2.3) and (2.8), it is sufficient by virtue
of the hypothesis to prove that

& [ d
(6.1) ,gl —— ‘ag(n, t)i < oo

uniformly in 0 <t{<zm. We have

n

2 Eod
(’)?/, t) nPn—] kg:l (pn-—-k - pn——k—l)vgo a’i Dr(t) .

d
dt
Writing the sum in (6.1) as

z +Z —L1+L27

n<1ft n>1f¢

we have

o

L1< Gﬂ;ut "+ nP g Pn—r — pn~k~—-1)

o

" TP g
<0t 3 2P

t n<1/¢ Pn—l

<C.

Let m, be a constant such that {p,— p.-,} is monotonic for n>m,. Then

2 n—my—1 I d
L.<C N A— et — Do — Dyt
2 ”>z]/t (’)b + l)P,,,.l IZI (Ip k p E ) é de ( )}

n

tﬁ

. v a
¢y ——— w— Pacrs) S, = D8
+ n>zllt (7?/ + I)Pn—‘l k=7'lz—mo (p ’ p * 1) vgo ds ( )’
= Ly + Lo, say.
By virtue of the fact that
z (I/Pn) < oo,

3
i
bt
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we observe that

(44 7 1
L,<C —_— —
e n>21/t (n+ 1) P i® &7t Paa

‘We now proceed to show that L, <C.

Case (i). Let {p,—p, be monotonic non-decreasing for » > m,. Since

n—me—1 k d n
(6.2) 2 Par—Pua) 2 7 D)= 0| 2] (P —DPuma)
k=1 =0

we have

12 ” 1 Pn— Pne
L.=0 e = (P — P = 0}~ G it 3y R
“ (ﬂ>zllt (n + I)Pﬂ*l ? (p p 1)) (t n>2:1/t Pn—l )

= s sy L)
O(t ng/t'n’ A(Pﬁ—l) ) * O(tngl/f nz) =0

Case (ii). Suppose {p,—P..,} is monotonic non-increasing. In this case
the expression in (6.2) is O((n/t*)py,,). Hence

i 7%
Ly,=90 o m _
H (n>21/t n 4+ 1)P,, t* Pum )

1/t pp
(an > 5 ) (——[ £ ’”) = 0@),
>1 [1/¢]

uniformly in 0 <{<<am.
This proves Theorem 3.

7. — It is evident that if {p,} is non-decreasing sequence satisfying (2.3),
then (2.6) holds. Also (2.4) = (2.5). Thus we deduce the following theorem.

Theorem 4. Let {p,} be any monotonic sequence of non-negative numbers
such that (2.3) and (2.4) hold. If (2.1) holds, then the series (2.2) is summable

IN, p.|.

It is clear from our theorems that summability |N, p.| of X(s, — s)/n is
a local property of the generating funection.
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