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PrEM CHANDRA (%)

Absolute Riesz Summability
and a New Criterion

for the Absolute Convergence of a Fourier Series. (*¥)

1. - Definitions and notations.

Let S a, be a given infinite series and {A,} a positive; steadily increasing,
monotonic sequence, tending to infinity with .

The series > a, is said to be summable by RIESz means of type A, and
order 7, or summable (R, Any 7)y 70, to sum s (finite), if

Riw) =wT > (W—2A)a,—>8 as w—>oo0 (1.
Ay Sw

The series Y a, is said to be absolutely summable (R, 4,, 7), or summable
IR, A, 7|, >0, if

R3(w) e BV (hy c0) (*),

where h is some finite positive number (%).
We suppose that f(f) is a periodic function, with period 2z, integrable in
the sense of LIEBESGUE over (—m,7w). Without loss of generality, we assume

(*) Indirizzo: Department of Mathematics, Govt. Science College, Jabalpur, India.
(**) This is based on Chapter I of the author’s Ph. D. Thesis entitled « Absolute
Summability », submitted to the University of Jabalpur (1968). — Ricevuto:9-V-1970.
() Riesz [7T].
(®) By «f(x)eBV(k, k) » we mean that f(z) is a function of bounded variation in
(h, ).
{3) OBRECHKOFF [4], [5]
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that the constant term in the FoURIER series of f(t) is zero, so that

ﬂmmzo

and
f(2) ~ i(a,n cos nt -+ b, sin nt) = =ii;A,,(t) .
Let
o) = Hf(@ + 1) + fle—0)},
so that
¢®~§Ammmm7

and we study the absolute Riesz summability and absolute convergence of

-]

> A, (@),

We follow the following notations throughout this paper. Let 0 < o< 1
and ¢ > 0.

]

(1.1) ﬂmszuww,

0

(1.2) nw)= 3 exp(n*)/n(log(n + 1)) (r>1)

exp n®)<

(1.3) K(w,t) = Y exp (n*) sinnt/n,

exp m®M=w

t

) E\~1-® 9 sinnw
(1.4) g(n, t) :ju <log ) 2 du ,

w nuw
0

t
7 —
(1.5) Rn, t) = f ut (log 1—;) ’ sinnu du (p>1, 0<i<m).

o
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2. - Introduction.

In 1950, MoHANTY (!) gave the following criterion for the absolute conver-
gence of o LEBESGUE-FOURIER series at a point, which is the analogue for the
absolute convergence of the classical HARDY-LITTLEWOOD convergence cri-
terion (2).

Theorem A. If (i) @(¢) log(k/t) e BV(0, %), where k>me? and (ii) the se-
quence {7z6An(m)} € BV, for 0 < 6 <1, then the series > A4,(x) is absolutely

n==1

convergent.

The technique used by MOHANTY was t0 obtain the following theorem on
the absolute RiEsz summability of a FOURIER series at a point, and to deduce
Theorem A by means of a Tauberian theorem, generalized later by Parr (3).

Theorem B. If ¢(t)log (k/t) e BV(0,7), then the series > 4,(») is sum-

n=1

mable |R,exp (n%),1] (0 <a<<1).

In the present paper the author obtains absolute Rimsz summability of a
Fourier series of type exp (n*) (0 <« << 1), and order unity, and uses this
result for obtaining a new criterion for the absolute convergence of a FOURIER
series at a point. We establish the following theorems:

Theorem 1. If (i) @) eBV(0,7) and (i) A@) (log (k/t))' e BV(0, ),

©

where ¢ > 0 and k>me2, then Y A,(x) is summable |R, exp (n*),1| (0 <o <<1).

n=1

Theorem 2. If (i) and (i) of Theorem 1 hold and {n*4.(x)} € BV, for

0<oa<l, then 3 |A,(#)] < oo

n=1

(1) MomaxTy [3].
() Harpy and Lirrrewoob [1], {2].

() PaT1 [6].
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3. — We shall require the following order-estimates for the proof of our
theorems:

3.1) > exp(®®)fn = O@w/logw) (1),
expn®) <w

(3.2) K(w, t) = O(w/(log w)**t) (?),

(3.3) R(n, 1) = 0{(log (n + 1))},

(3.4) n(w) = Of{w/log w (log log w)7} .

Proof of (3.3). Case (i). When n]'<?, where n,=n-}1, we have

m ot R
R(n,t):( f—}-[ )(sinnu) /{u(legS)}-dib=J1+J2, say .

i/n,

By the second mean value theorem, we have

1/

J; = (log kn,)—? [

7

= 0{(log ny)~7} .

sin nuw

du 0 << nr)

Now, since »* (log (k/u))~" is decreasing in (n*,t), we have, again by the
second mean value theorem,

.
J, = ny (log kny)~» f sinnuwdu  (nrt<t'<t)
1/n,

= 0{(log ny)~7} .
Case (ii). When n;*>1, for the n, defined in Case (i), we have

1/ny  1fng

R(n, 1) = ( fmf ) (sin nu) /{u <log Q—ZZ)P} cdu=dJ, 4+ J,, say .

(*) MomANTY [3], (4.2).
(*) MomaxTy [3], (4.1).
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Now, since (log (kjw))=? is monotonic increasing in (¢, n;*), we have

1/ny

|J2 =0 {(log kn,)—r f

[sin nu |

du} = 0{(log 1)} .

Hence, finally, it follows that
R(n, t) = 0{(log (n + 1))~} .

Proof of (3.4). Let exp(m®)<w < exp{(m + 1)*}, then
nw) =3 explor)/n(log (n + 1))7 = —i e +>..=P+@,

n=1 =q
where ¢ is so chosen that
1) exp(n®)/n(log (n + 1))?
is steadily inereasing for n>¢ and

(iD) 1—(g* + pleg™log (1 + )} >4 >0
for strietly positive number A.
Now, P == 0(1), and

m+1

Q< f exp(z*) 2~ (log (x + 1))rdw=J, say.

Now

J = iexp(a:"‘) o~ (log (2 + 1))*1’ -

m+1

263

say,

+ f exp(@*) z~ (log (& -+ 1)) (&~ -+ pa'~ [a(1+ @) log (1 + z)) dz .

Therefore

exp{(m +1)*} (m +1)~¢
a(log (m + 2))»

J< + (= + pleg® log 1+ 9))J,

so that
J = O{w(log w)~* (log log w)~7} .
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4. — For the proof of the theorems we require the following lemmas:

Lemma 1 (V). If (i) Y a,is summable |B, 2, k| (k> 0), (i) {@, Auf(An— Aus)}

=1 ]

e BV and (iii) {4,/A,+.} € BV, then > «, is absolutely convergent.

n=1

Lemma 2. The integral

I= f w2 > exp®®) g(n,m)|dw,

exp (n®y g w

18 convergent.

Proof. Integrating by parts, we have

1 [ . L\l te L . k\ere
g(n, ) = -—?—Lf(sm nt) / {t (10g 2> } - dt - I / (sin nt) / {t (log t-) } - di

= 0 {n(log (n+ 1))~} + O {n~*(log (n+ 1))=*~¢}
(by (3.3))

= 0 {n~(log (n + 1))-1-¢}.

Therefore by (3.4), we have

I=0{ f w= (log w)~* (log log w)~*~*dw} = 0(1) .

Proof of Theorem 1. Since,

2
A (2) = - f o(t) cos nt df ,

7T
0

(t) ParI [6).
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we have, integrating by parts,

2 sin ni
Aya) === | == tde()

2 o sinnt
= - 1t — s
_/ A ot at

2 L\1+e ! W\~ —¢ 2  sinnuw
= Blx) <log 7—T> f % <10g 17) 5 “a du
[1]

T t
2 k 1+91 W ¢ sinnu
Tz _[ d {‘B(t) (10g t—> I f (Iog (k/fw))1+€ du  mu du .
0 0

The series » A,(x) is summable |R,exp(n®),1], if

n=1

I= f w2 Y exp(n®)d,(x)|dw < co.

o2 exp (n®) Kw

For the proof of the Theorem, since by hypothesis f(z) log ((k/=))* ™ and
[1a{() (log (k/t))**°}| are finite, it is sufficient to prove that

0

(5.1) I, = f w2 Y exp(n) gn,m)|dw < co;

exp(n®) << w

(5.2) L= [w?| 3 expl) gln,1)|dw = 0(1),

exp )y << w

uniformly in 0 <? <a.
Proof of (.1) This follows from Lemma 2.
Proof of (5.2). Integrating by parts, we have

B =>(1og 5\ sin mt
g{n, )_7—L ogt sin n¢ —

t

t
1 * . I\1+e 1 +e . T\2+e
- ?—LJ (smnu)/ {u (log ;) } . du——T f (sinnwu) / {u (log ﬁ) } - du .
/]

0

18
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Therefore, for the proof of (5.2), it is sufficient to show that

dew=0(1),

r J\L +e
(5.2) (@) I, :j w2 > exp(n®) (sin nt)/ n (log f)
/ exp (nx) << w i

dw = 0(@1),

(6.2) (i) I, :f w2 exp(n”) RB(n, 1)

exp(ny) < w

uniformly in 0 <t <<z

Proof of (5.2) (i). Letr = (k/£)**~*, we have

T

I, = f +f vo = Logi 4 Toye say .

e= e

Now

T

f\—1—s ¢
Iy, = {(IOg Z) f w?

o2

n~t exp(n”)
expin®) << w

T

dw}
%

- 0{(10g z)_l—f f w1 (log 1)1 dw} (by (3.1))

=0(1),

uniformly in 0 <f{<z. And by (3.2), we have

k ~1—8
Iyp,=10 {t—l (log Z) f w (log w)~ W dw}

T
e

f\—1—¢
=0 {t—l (10g f) r‘““”/“} = 0(1),

uniformly in 0 <t <.
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Proof of (5.2) (ii). F¥or p>1, we have, by (3.3),

L.,=0{[ w2 > exp@®®)n(log (n+ 1)) dw}

2 expmM <w
=0 { fm w1 (log w)~* (log log w)~? dw} (by (3.4))

= 0(1)’

uniformly in 0 <t <<wm.

This completes the proof of Theorem 1.

6. « Proof of Theorem 2.

It has been observed by MomanTY [3] that the sequence (i) {exp (n%)/
exp{(n+1)°}} and (i) {#*"* exp(n®)/(exp(n®) — exp{(n —1)*}} are of BV
and hence the conditions (ii) and (iii) of Lemma 1 are satisfied. Thus Theorem 2
now follows from Theorem 1, by virtue of Lemma 1.

The author acknowledges his gratitude to Dr. R. N. MOHAPATRA, Uni-

versity of Sambalpur, for his kind interest in the preparation of this paper.
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