SHAKI BALA (*)

Generalized Logarithmic Mean Function of Derivatives of Entire Functions Defined by Dirichlet Series. (**)

1. – Let E be the set of mappings $f: C \to C$ (C is the complex field) such that the image under f of an element $s \in C$ is

$$f(s) = \sum_{n \in N} a_n \exp(s \lambda_n)$$

with

(1.1)
$$\lim_{n \to +\infty} \sup \frac{\log n}{\lambda_n} = D < +\infty,$$

and $\sigma_{\sigma}^f = +\infty$ (σ_{σ}^f is the abscissa of convergence of the Dirichlet series defining f); N is the set of natural numbers $0, 1, 2, ...; \langle \lambda_n \colon n \in N \rangle$ is a strictly increasing unbounded sequence of nonnegative reals; $s = \sigma + it$, where $\sigma, t \in R$ (R is the field of reals); and $\langle a_n \colon n \in N \rangle$ is a sequence in C. Since the Dirichlet series defining f converges for each complex s, f is an entire function. Also, since $D < +\infty$, we have ([1], p. 168), $\sigma_a^f = +\infty$ (σ_a^f is the abscissa of absolute convergence of the Dirichlet series defining f), and that f is bounded on each vertical line $\sigma = \sigma_0$.

In an earlier paper [2] we have defined the generalized logarithmic mean function of an entire function $f \in E$ and have investigated into some of its properties. In this paper we define analogously the generalized logarithmic mean function of the n^{th} derivative $f^{(n)}$ of an entire function $f \in E$ and study some of its properties.

^(*) Indirizzo: Mathematics Department, University of Jammu, Jammu, India.

^(**) Ricevuto: 28-X-1970.

Definition. For any $f \in E$, $\sigma < \sigma_{\sigma}^{f}$ and $\delta \in R_{+}$ (R_{+} is the set of positive reals), we define the generalized logarithmic mean function G_{n} of the n^{th} derivative $f^{(n)}$ of f as

$$(1.2) \ \ G_n(\sigma, f^{(n)}) = \lim_{T \to +\infty} \frac{1}{2 \ T \ \exp(\delta \sigma)} \int_{0}^{\sigma} \int_{-T}^{T} \log |f^{(n)}(x+it)| \exp(\delta x) \, \mathrm{d}x \, \mathrm{d}t \ , \quad \forall \ n \in N \ .$$

Our study of a few properties of G_n has taken the shape of the following theorems:

Theorem 1. If G_n is the generalized logarithmic mean function of the n^{th} derivative $f^{(n)}$ of an entire function $f \in E$, then G_n is an increasing function and $\log G_n$ is a convex function of σ .

The proof of this Theorem is similar to that of theorem 1 of [2].

Theorem 2. If G_n is the generalized logarithmic mean function of the n^{th} derivative $f^{(n)}$ of an entire function $f \in E$, and the lower order λ of f is greater than 1, then

(1.3)
$$G_n(\sigma, f^{(n)}) > G_{n-1}(\sigma, f^{(n-1)}) > ... > G(\sigma, f), \quad \forall \sigma \geqslant \sigma_0 > 0,$$

where $G_0 = G$.

In order to prove this Theorem we need the following two lemmas:

Lemma 1. If G_1 is the generalized logarithmic mean function of the derivative $f^{(1)}$ of an entire function $f \in E$, then

$$(1.4) G_1(\sigma, f^{(1)}) \geqslant \frac{G(\sigma, f) \log G(\sigma, f)}{\sigma}, \forall \sigma \text{ s.t. } 0 < \sigma < \sigma_\sigma^f.$$

Proof. We have, from (1.2),

$$G_{1}(\sigma, f^{(1)}) = \lim_{T \to +\infty} \frac{1}{2 T \exp(\delta \sigma)} \int_{0}^{\sigma} \int_{-T}^{T} \log |f^{(1)}(x + it)| \exp(\delta x) dx dt$$

$$= \lim_{T \to +\infty} \frac{1}{2 T \exp(\delta \sigma)} \int_{0}^{\sigma} \int_{-T}^{T} \log \left| \lim_{\varepsilon \to 0} \frac{f(x + it) - f(x(1 - \varepsilon) + it)}{\varepsilon x} \right| \exp(\delta x) dx dt$$

$$\geqslant \lim_{T \to +\infty} \frac{1}{2 T \exp(\delta \sigma)} \int_{0}^{\sigma} \int_{-T}^{T} \log \lim_{\varepsilon \to 0} \frac{|f(x + it)| - |f(x(1 - \varepsilon) + it)|}{\varepsilon x} \exp(\delta x) dx dt$$

$$\begin{split} &= \lim_{T \to +\infty} \frac{1}{2\,T\, \exp(\delta\sigma)} \int\limits_0^\sigma \int\limits_{-T}^T \lim_{\varepsilon \to 0} \log \frac{|f(x+it)| - |f(x(1-\varepsilon)+it)|}{\varepsilon\,x} \, \exp(\delta x) \, \mathrm{d}x \, \mathrm{d}t \\ &\geqslant \lim_{T \to +\infty} \frac{1}{2\,T\, \exp(\delta\sigma)} \int\limits_0^\sigma \int\limits_{-T}^T \lim_{\varepsilon \to 0} \frac{\log |f(x+it)| - \log |(f(x(1-\varepsilon)+it)|}{\varepsilon\,x} \, \exp(\delta x) \, \mathrm{d}x \, \mathrm{d}t \\ &= \lim_{\varepsilon \to 0} \lim_{T \to +\infty} \frac{1}{2\,T\, \exp(\delta\sigma)} \int\limits_0^\sigma \int\limits_{-T}^T \frac{\log |f(x+it)| - \log |f(x(1-\varepsilon)+it)|}{\varepsilon\,x} \, \exp(\delta x) \, \mathrm{d}x \, \mathrm{d}t \\ &\geqslant \lim_{\varepsilon \to 0} \frac{G(\sigma,f) - G(\sigma(1-\varepsilon),f)}{\varepsilon\,\sigma} \, . \end{split}$$

Let

$$\Phi(\sigma, f) = \frac{\log G(\sigma, f)}{\sigma},$$

then, since $\log G$ is an increasing convex function of σ ([2], theorem 1) it follows that φ is an increasing function of σ . Therefore

$$G_{1}(\sigma, f^{(1)}) \geqslant \lim_{\varepsilon \to 0} \frac{\exp(\sigma \varphi(\sigma)) - \exp((\sigma - \varepsilon \sigma) \varphi(\sigma))}{\varepsilon \sigma} =$$

$$= \exp(\sigma \varphi(\sigma)) \varphi(\sigma) = \frac{G(\sigma, f) \log G(\sigma, f)}{\sigma}.$$

Lemma 2. If G_1 is the generalized logarithmic mean function of the derivative $f^{(1)}$ of an entire function $f \in E$, and if ϱ and λ are, respectively, the Ritt order and the lower order of f, then

(1.5)
$$\lim_{\sigma \to +\infty} \sup_{\text{inf}} \frac{G_1(\sigma, f^{(1)})}{G(\sigma, f)} \geqslant \frac{\varrho}{\lambda}.$$

This follows from (1.4) and the following result in [2]:

(1.6)
$$\lim_{\sigma \to +\infty} \frac{\sup \log G(\sigma, f)}{\inf \sigma} = \frac{\varrho}{\lambda}.$$

Proof of Theorem 2. If $f^{(k)}$ is the k^{th} derivative of f, then, writing (1.5) for $f^{(k)}$, we get

$$\lim_{\sigma\to+\infty} \inf \frac{G_k(\sigma,f^{(k)})}{G_{k-1}(\sigma,f^{(k-1)})} \geqslant \lambda \; .$$

Hence, for any $\varepsilon > 0$, we have

$$G_k(\sigma, f^{(k)}) > (\lambda - \varepsilon) G_{k-1}(\sigma, f^{(k-1)}), \quad \forall \quad \sigma \geqslant \sigma_0(\varepsilon),$$

or, since ε is arbitrary and $\lambda > 1$,

(1.7)
$$G_k(\sigma, f^{(k)}) > G_{k-1}(\sigma, f^{(k-1)})$$
.

Writing (1.7) for k = 1, 2, ..., n, we get n inequalities and combining these n inequalities we get (1.3).

Theorem 3. If G_n is the generalized logarithmic mean function of the n^{th} derivative $f^{(n)}$ of an entire function $f \in E$, and the lower order λ of f is greater than 1, then

$$(1.8) G_n(\sigma, f^{(n)}) > G(\sigma, f) \left(\frac{\log G(\sigma, f)}{\sigma}\right)^n, \forall \sigma \geqslant \sigma_0 > 0.$$

Proof. If $f^{(k)}$ is the k^{th} derivative of f, then we get, from (1.4),

(1.9)
$$\frac{G_k(\sigma, f^{(k)})}{G_{k-1}(\sigma, f^{(k-1)})} \geqslant \frac{\log G_{k-1}(\sigma, f^{(k-1)})}{\sigma}.$$

Giving k the values 1, 2, ..., n in (1.9) and multiplying the n inequalities thus obtained we get

$$\begin{split} \frac{G_n(\sigma,f^{(n)})}{G(\sigma,f)} \geqslant \frac{\log G(\sigma,f)}{\sigma} &\cdot \frac{\log G_1(\sigma,f^{(1)})}{\sigma} \dots \frac{\log G_{n-1}(\sigma,f^{(n-1)})}{\sigma} \\ > &\left(\frac{\log G(\sigma,f)}{\sigma}\right)^n \,, \end{split}$$

in view of (1.3). Hence the Theorem.

Corollary. If G_n is the generalized logarithmic mean function of the n^{th} derivative $f^{(n)}$ of an entire function $f \in E$, and the lower order λ of f is greater than 1, then

(1.10)
$$\lim_{\sigma \to +\infty} \sup_{\text{inf}} \left(\frac{G_n(\sigma, f^{(n)})}{G(\sigma, f)} \right)^{1/n} \geqslant \frac{\varrho}{\lambda}.$$

This follows from (1.8) and (1.6).

2. – In this section we shall study results pertaining to the logarithmic mean function L_n and the generalized logarithmic mean function G_n of the n^{th} derivative $f^{(n)}$ of an entire function $f \in E$. The function L_n is defined as follows:

$$(2.1) L_n(\sigma,f^{(n)}) = \lim_{T\to +\infty} \frac{1}{2T} \int_{-T}^T \log|f^{(n)}(\sigma+it)| \,\mathrm{d}t \,, \qquad \forall \,\, \sigma < \, \sigma_\sigma^f \,.$$

Theorem 4. If L_n and G_n are, respectively, the logarithmic and the generalized logarithmic mean functions of the n^{th} derivative $f^{(n)}$ of an entire function $f \in E$, then, for any $\delta \in R_+$, and $\sigma_1, \sigma_2 \in R$ such that $0 < \sigma_1 < \sigma_2 < \sigma_0'$,

$$(2.2) L_n(\sigma_1, f^{(n)}) \leqslant \delta \frac{\exp(\delta \sigma_2) G_n(\sigma_2, f^{(n)}) - \exp(\delta \sigma_1) G_n(\sigma_1, f^{(n)})}{\exp(\delta \sigma_2) - \exp(\delta \sigma_1)} \leqslant L_n(\sigma_2, f^{(n)}).$$

Proof. We have, from (1.2),

$$egin{aligned} G_n(\sigma,f^{(n)}) &= \lim_{T o +\infty} \ rac{1}{2\,T\,\exp(\delta\sigma)} \int\limits_0^\sigma \int\limits_{-T}^T \log\,|f^{(n)}(x\,+\,it)\,|\,\exp(\delta x)\,\,\mathrm{d}x\,\mathrm{d}t \ \\ &= rac{1}{\exp(\delta\sigma)} \int\limits_0^\sigma L_n(x,f^{(n)})\,\exp(\delta x)\,\mathrm{d}x \ . \end{aligned}$$

Therefore

(2.3)
$$G_n(\sigma_1, f^{(n)}) = \frac{1}{\exp(\delta \sigma_1)} \int_0^{\sigma_1} L_n(x, f^{(n)}) \exp(\delta x) dx$$

and

(2.4)
$$G_n(\sigma_2, f^{(n)}) = \frac{1}{\exp(\delta \sigma_2)} \int_0^{\sigma_2} L_n(x, f^{(n)}) \exp(\delta x) \, dx.$$

From (2.3) and (2.4) we get

$$(2.5) \left\{ \begin{array}{l} \exp(\delta\sigma_2) \ G_n(\sigma_2, f^{(n)}) - \exp(\delta\sigma_1) \ G_n(\sigma_1, f^{(n)}) \\ = \int\limits_{\sigma_1}^{\sigma_2} L_n(x, f^{(n)}) \exp(\delta x) \ \mathrm{d}x \leqslant L_n(\sigma_2, f^{(n)}) \frac{1}{\delta} \left(\exp(\delta\sigma_2) - \exp(\delta\sigma_1) \right), \end{array} \right.$$

and

$$(2.6) \quad \exp(\delta\sigma_2) \ G_n(\sigma_2, f^{(n)}) - \exp(\delta\sigma_1) \ G_n(\sigma_1, f^{(n)}) \geqslant$$

$$\geqslant L_n(\sigma_1, f^{(n)}) \frac{1}{\delta} \left(\exp(\delta\sigma_2) - \exp(\delta\sigma_1) \right).$$

Combining (2.5) and (2.6), we get (2.2).

Theorem 5. If L_n and G_n are, respectively, the logarithmic and the generalized logarithmic mean functions of the n^{th} derivative $f^{(n)}$ of an entire function $f \in E$ and M_n is the supremum function of $|f^{(n)}|$, then, for any $\delta \in R_+$,

(2.7)
$$\lim_{\sigma \to +\infty} \sup \frac{G_n(\sigma, f^{(n)})}{\log M_n(\sigma, f^{(n)})} \leqslant \limsup_{\sigma \to +\infty} \frac{G_n(\sigma, f^{(n)})}{L_n(\sigma, f^{(n)})} \leqslant \frac{1}{\delta}.$$

Proof. We have, from (1.2),

$$egin{aligned} G_n(\sigma,f^{(n)}) &= \lim_{T o +\infty} \, rac{1}{2\,T\,\, \exp(\delta\sigma)} \int\limits_0^\sigma \int\limits_{-T}^T \log\,|f^{(n)}(x+it)| \exp(\delta x) \,\,\,\mathrm{d}x \,\mathrm{d}t \ &\leqslant rac{1}{\delta} \, L_n(\sigma,f^{(n)}) ig(1-\exp(-\,\delta\sigma)ig) \,\,, \end{aligned}$$

therefore

(2.8)
$$\lim \sup_{\sigma \to +\infty} \frac{G_n(\sigma, f^{(n)})}{L_n(\sigma, f^{(n)})} \leqslant \frac{1}{\delta}.$$

Since, from (2.1), we get

$$L_n(\sigma, t^{(n)}) \leq \log M_n(\sigma, t^{(n)})$$
,

it follows that

(2.9)
$$\frac{G_n(\sigma, f^{(n)})}{L_n(\sigma, f^{(n)})} \ge \frac{G_n(\sigma, f^{(n)})}{\log M_n(\sigma, f^{(n)})} ,$$

whence, in view of (2.8),

$$\lim\sup_{\sigma\to+\infty}\,\frac{G_n(\sigma,\,f^{(n)})}{\log\,M_n(\sigma,\,f^{(n)})}\leqslant\,\, \limsup_{\sigma\to+\infty}\,\frac{G_n(\sigma,\,f^{(n)})}{L_n(\sigma,\,f^{(n)})}\leqslant\frac{1}{\delta}\,.$$

The author wishes to express her thanks to Dr. J. S. Gupta for his help and guidance in this paper.

References.

- [1] S. Mandelbrojt, Dirichlet series, Rice Inst. Pamphlet 31 (1944), 159-272.
- [2] S. Bala, Generalized logarithmic mean function of entire functions defined by Dirichlet series (to appear.)

* * *

