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Linear Operators

Defined with Poisson Type Distribution. (*¥)

1. - Introduction.

Recently CHENEY and SHARMA [2] have considered a generalization of
BERNSTEIN polynomials based upon the generalized binomial theorem due to
JeNsEN [38]. CimocA and Luras [1] have generalized the MEYErR-KONIG and
ZELLER operator [5] by using a generalized BERNSTEIN power series given by
PoLvaA [8). The purpose of this paper is to consider, in the same way a genera-
lization of the Szasz-MIRAKYAN operator [6] by using another interesting result
of JENSEN [8]. The SzAsz-MIRAKYAN operator is defined on [a, b], as

(1) (Bufo) = Smato) 1(3 )
where
1.2} Mar(®) = exp(— nx). (ne)/k! (k=0,1,2,..),

is a Poisson disfribution.
JENSEN’s result is given by

=]

(1.3) exp(a2)/(1 — f2) = 3 (e + KB)* (zexp(—pa)ifk!,  |fa] <1.

k=0

(*) Indirizzo: University of Calgary, Alberta, Canada.
(**) Ricevuto: 26-111-1970.
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Starting with the LaeraNGE’s formula

O N I KPR = I
e ek | @ "’(”)]}z:o [f(z)}
and setting

ple) = exp(ez)  and  f(z) = exp(f2)

the expression (1.3) ean easily be derived.
We substitute 2 =1 and « = n in (1.3) to obtain an extension of (1.2) as

(1.4) Wiz, f) = (1 —p)(nx + kp): {exp(— (nz + kB))}/E! (k=0,1,2,..),

such that

Wilnae, f) = 1.

bl
e

‘We may now define a new operator with the help of a Poissow type distri-
bution (1.4), consider its convergence properties and give its degree of appro-
ximation. It will be seen in the sequal that our operator has approximation
properties similar to those of BERNSTEIN polynomials. Further the results
for Szasz-MIRAKYAN operator can easily be obtained from our operator
as a particular case when f = 0.

2. = The operators and their convergence.

In analogy with (1.1), the generalized Szasz-MIRAKYAN operator may be defi-
ned for 0<f <1 as

@1 (Puf)@) = (1 —p) 3 (nx + Bl exp(— (nw + BL)) - f(Efn) k!

The parameter f may depend only on the natural number n.

It is clear that the SzAsz-MIRAKYAN operator is a special of our operator (2.1)
and is obtained when f = 0.

The convergence property of the operator (P,f)(z) may be proved in the fol-
lowing

Theorem (2.1). If 0<f =pn) >0 as n—> oo, then P,f—f (uni-
formly) for all fe C[O, A].

The proof can be made to depend on the following lemma.
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Lemma. Let

@

(2.2) Sy nm, f) = 3 (nw + kPy+= {exp (— (nw + kp))}/k!

k=0

such that

(2.3) 8@, nw, f) = 1/1 —p) .
Then
(2.4) S(ry nw, f) = g p (nx + k) S(r — 1, nw + fk, B) .

Proof. It can be seen from (2.2) that the funetions S(r, nw, ) satisfy
the recurrence relation

(2.5) - 8(rynm, ) = nxSr—1, nz, f) + 80, nx + B, f) -
A repeated use of (2.5) proves the Lemma.

Particular values. By applying (2.3) and (2.4) it further follows that

d nx + Bk nw B
., S 27 ’ = = ’
(2.6) @ no )= 2 P =a=g T a-pp
- . nx -+ Bk p? .
S(3, nw, f) = ;Zoﬁ (n@ + Bk) [ a—pr T = ﬁ)a] =
(2.7)
2 2 3 2 3 884
__mw n naf 4 B + B

1—B2  (A—p*  (=pF " (1—pp°

These formulae will be used in proving the Theorem (2.1).

Since (P,.f){x) is +ve linear operator for 1> >0, it is sufficient, by
KorovkIN’s theorem [4], to verify the uniform convergence for test functions
f(t) =1, t and #*. It is obvious from (1.4) that

(2.8) Pl=1.

Now putting f(t) =t in (2.1) and using (2.2) and (2.6) it can be easily shown
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that

_ & (nw + k) exp(— (nz 4 kB) &
o) (Pat)(@) = (1 —f) kgﬂ ! n
- _(1=pS2nx+ BB = + B

= . T1—8 " al— g2’

which tends uniformly to z as f = o(1).
Proceeding to the function f(f) =1 and applying (2.2), we have

kexp (— (nx + Bk)) k2
k! »

o

@)= a—p 3 L0
= (L —B)[8(3, na + 28, f) + 82, nw + B, H)ln*,
and a use of (2.6) and (2.7) yields

_ f? (14 26) P + 2p)
(2.10) (Pat?)(2) = 1= )y + n(l— B)° 21 — B)r°

Thus if f = o(1) the expression (2.10) tends uniformly to 2.
Hence, by KoROVKIN’S theorem, the proof of the Theorem (2.1) is complete.

3. = Order of approximation.
Theorem (3.1). Iff eC[0,] and 0<p <1, then

/@) — (Bf)(@) | < 5 wlv/AT5)

where

[ Ap? 1428 Bl + 2B) ]
p= 4

(1— 87 + n(1—pB)* * In¥(1— B)

and w(d) = sup |f(2") — f(='); ', 2" €]0, A]; being a +ve number such that
|o" - @] < 6.

Proof. By using the properties of modulus of continuity
(3.1) @) —f@) | <w(]e"—a'| );

(3.2) w(yd) < (y + 1)w(d), y>0
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and noting the fact that

S wi(nz, f) =1 and  w(naz, f)>0, Y,k

k=0

it can be seen, by the application of CaucHY'’s inequality, that

(nx + ﬁk

[f(@)—(Paf)(@) | < {1—!’ Z(l—ﬂ) exp(—(nw-+pk) \w—— \} w(d)

jl—}— [ 1—8) z(n +ﬂk) exp(— —(nw-BR)) - (m__g)z]‘/} ().

Now by linearity of the operator and by using (2.8), (2.9) and (2.10) we get

(3.3)

3 1—p T exp(— (no+ 1) (m —’—“—) * P, 1— 20(Pa 1) @)+ (B )(@)

oB o+ 2% AU+ 20) [ B 1428 B B

T A= al—pp w1l py T pr Ta(— pp T (e ﬁ)“:lz il

Hence (3.3) can be written as
(3.4) |f(@) — (P N@)] < [1 + -2%1\3{] w(?) -

Choosing § = N}, Theorem (3.1) is proved.
For B = 0, the expression (3.4) gets reduced to an inequality for SzAsz-
MIRAKYAN operator obtained earlier by MULLER [7].

Theorem (3.2). If fe C'[0, A], then the following inequality holds:
3 1 1
@) — (Pi@) | < 5 N wi (V5

where w,(0) is the modulus of continuity of f'.

Proof. For definiteness we prove the theorem for f'(z)>0 but it also
applies to f(#) < 0. By the mean value theorem of differential calculus, it is
known that

fla) — f(k[n) = (00 — *) (&,

where & =&, ;(2) is an interior point of the interval determined by z and kln.
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Now

B k
n(1l— B)* T n

o) —fiy < (25 + Jr@+ (o—2) v —ran.

Multiplying both sides of the inequality by w,(n#, 8), summing over %k and
using (2.9) we get

(3.6) |f(x)

)

_7 ! H—W___;MQ exp (—(na-+pk)) - |f'(E)—F (@) |.

Now by (3.1) and (3.2)

]f'(f)‘“f’(w)i<w1(]f§'—w” (1+ ‘]f““wl) w (6) < (1‘|‘ ‘—"‘m) w,(0) ;

where J is a +-ve number not depending on .
A use of this in (3.6) gives

/(@) — (uf)(@) | < {i o ”—"”‘Z”!”——Jr@exp(— (nas -+ %)) +
2 2(1 — B)(nx Tc)
+5.2 ( ) E PO xp(— (nw+ﬂk>)} 0,(9)

Hence by CavucHY’s inequality and by (3.4)
1, 1 1,
.1 @) = (Pu@)] < 435 (14 3535 | o).

Chooging 6 =N Zz, Theorem (3.2) is proved.

We may put f=0,8 =1/+/n in (3.7) to get the expression for Szasz-
MIRAKXYAN operator.

Theorem (3.3). If f(z) is bounded and possesses a second derivative at
a point x, and if fn® — C, then

(3.8) n[(Pf) (@) — f(@)] — 31" (@)[w + 2201 .

In order to prove (3.8) we write

3.9) 1 (g) — f(@) = (ZG -—m) @) + (——w)2 [—;: f(@) + 6 (;——m)] ,

where O(h) is bounded for all h and converges to zero with h.
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Multiplying (3.9) by w(nz, §) and summing, we get

n( Py f) (@) — f(@)] =
= nf'(@) [(Pa1)(2) — 2] 4 gf”(fv) [(Pnt?) (@) — 20(P, 8) (@) + 7] 4

k L (nx + Bk)* exp(— (na + Bk))

-{—n(l—-ﬁ);::o (;b-m)zﬁ(ﬁ——m) o

From earlier results, we know that «[(P,¢)(z) —=2] — 0. If fn®— C we can
show by using (2.9) and (2.10) that

n[{(P,t2)(@) — 2a(P, t{x) + «*] = 22C +@.

Thus the Theorem is proved.
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