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Dynamical Analysis of Viscoelastic Beams. (*%)

Introduction.

Free and forced vibrations of elastic beams have been investigated extens-
ively [1], [2], [3]. Several papers have also been published on the vibration
of viscoelastic beams [4], [5], [6]. However the present work is confined to
the study of viscoelastic beams subjected to impulsive excitations. In contrast
with the preceding works, this investigation has been done using a correspondence
principle [8]. It is known that in the transform plane, the equations for the
elastic and viscoelastic dynamical systems are same except that the elastic
constants in one system are replaced by the corresponding viscoelastic transform
moduli in the other system. The solution for a viscoelastic beam may thus be
obtained from that of the elastic beam by taking the LAPLACE transform of the
elastic solution, replacing elastic constants by corresponding viscoelastic moduli
in transform parameter and finally by inverting the transform. It appears at
the outset that one can obtain solutions to many viscoelastic problems by merely
applying this principle. This, however, is not true; because the solutions of
not many dynamical problems in elasticity are known up-to-date and secondly
the inversion of resulting transforms also becomes extremely difficult for even
the simple type of viscoelastic materials. The present investigation has offered
us an exact solution to an identical problem with the elastic BERNOULLI-EULER
beam, but the inversion of the transformed solution for the general viscoelastic
beam is however not simple, to yield an exact solution for the viscoelastic probl-
em. On the other hand solutions to the viscoelastic beams offered by Favre [4],
FrauerTy [5], PAN [6] and others are of different nature. Their solutions are
in the series form and do not enable one to perform quantitative analysis with
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much ease. The present investigation has advantage over the others in so much
as this work gives the asymptotic solutions to the otherwise unmanageable
problem. Furthermore, the solutions have been presented here for unit impulse
so that the response of beams can be determined for an arbitrary excitation
by using DUmEAMEL’s integral.

We first consider the transverse motion of a viscoelastic beam of the Bur-
NOULLI-EULER type: the motion is due to an impulse at # = 0, ¢ = 0. As first
step, we write the integral solution by applying the correspondence prineiple
to the solution of identical elastic problem. Approximations to this solution
are then obtained for small and large values of time using asymptotic methods.
These solutions determine the instantaneous and the long term response of
beam due to an impulse loading and are useful for the stability purposes. The
effects of rotatory inertia and shear are studied by considering motions ac-
cording to the RAvLEIGH and TIMOSHENKO beams. The longitudinal and tors-
ional motions have also been considered. These motions are governed by the
one-dimensional wave equation.

1. - Constitutive relationships and equations of motion .

For a linear isotropic viscoelastic material, the stress-strain relationship
can be represented as follows:

P(D)s;; = Q(DYey;
(1.1)
P (D)o, = Q.(D)e;;,

in which g,; is three times the average hydrostatic tension and &;; 18 the dilat-
ation, s;; and e; are the stress and strain deviators respectively. They are
related to the stress and strain tensors in the following manner:

84 = 04— % Oz Oy
(1.2)

_ 1
Cij == €45 — 7§ Erxe Oise

The P,, @, and P, , @, are differential operators of the form > @, D», where D
n=0

is the time derivative 9/0t. The coefficients a, and the number m are in general
different for each operator.
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Comparing the expressions in equation (1.1) with the corresponding results
for an elastic material, it may be concluded that the viscoelastic operators
?):g; and % correspond to 2x and 3%, where 1 and k are the shear and bulk
moduli respectively. Since most experimental data on actual viscoelastic mat-
erials provide information on the behaviour in shear or simple tension and as
the dilatation fest is difficult to perform; several assumptions are usually made
regarding the dilatational behaviour of these materials, each one in certain
circumstances proves to be a good approximation to the acutal behaviour.
We assume incompressibility as a condition for dilatation, so that

QD) _
(D)

‘We may now establish the following correspondence between the elastic constants
and the viscoelastic operators:

Modulus of elasticity I <————>§ 9LD)
2 P(D)’
1 Q4D)
Shear modulus pE—> s ik
Bulk modulus k= o0,
Porsson’s ratio y =

The approximate equations for the dynamic flexure of elastic beams are [10]:

The BERNOULLI-EULER equation
(1.3) Yoo + € K Yopaw = F(w, 1),

where ¢, = H/p, k*==1]A.
RAYLEIGH'S equation

(1.4) Yo + 0(2) E? Youne ~ K* Yuuer = F(z, 1)

and the TIMOSHENKO beam equation

o 7.2

& 2 -
(1.5) Y "l 0(2) ke Yoras — k® (1 "*:* 8,) ?/x:ctt ”li— "’(.2_ Yeee = F(Qj? t) ’
‘0
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¢' is a non-dimensional constant equal to 2(1 -+ &)/R/, R’ being a constant
depending upon the shape of the cross-section of the bar. The differential equat-
ions of motion for longitudinal vibrations of rods and for torsional vibrations
of cylindrical bars are identical viz

(1.6) Pre == C* Py

for the case of longitudinal vibration of a barg representsthe longitudinal displ-
acement and ¢ = (B/p)'/%, for torsional vibration of a cylindrical bar @ represents
the angular rotation of a cross-section and ¢ = (ufp)/2. In both these cases
¢ has the dimensions of a linear velocity (LT-1).

2. - Solution for Bernoulli- Euler elastic beam.

The BErNOULLI-EULER equation is an approximation to flexural vibrations
in beams. It is assumed that the length of the beam is large compared with
the cross-sectional dimensions and that the vibration oceurs in the principle
plane of bending. The differential equation governing the transverse displac-
ement y(x, t) in this case is

az 34
(2.1) (azz + 7,25;4) Y, 1) = o(x) O(¢) ,

where v = ¢l k2.
Denote the Larrack transform of y(w, t) with respect toit by y(z, p):

©

¥z, p) = [y, 1) > .

0
Apply a LAprAck transform to equation (2.1) to get
(2.2) (p* + y* /02*) y(w, p) = ().

Consider the homogeneous equation

(2:3) (p* + 9* 8/02%) (o, p) = 0.
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b
ot
=0}

The solution of equation (2.3) is

Aw) = o eV ke Ve g oty e= VTl baVe

oty eV (=14 Dz/V2 -+ oty =Yooyl (142 VE for &« >0

fl

2.4) y(@, p)

B({g) o 5] @\’f$-(1+i)wlvg SL /5’2 g‘\’/ﬁy"%l-\“x‘)x/\/; =y

| L. /)’3 (;\/'m"‘ (—1+nzfVe e ﬂ-l g—\/vy—"(—1+i)1/\/§ for =« <0 ,

where a;, f;, (1 =1, 2, 3, 4) are determined so that (2.4) represents the solut-
ion of (2.2). It is sufficient to require that at # =0 (cf. [11])

(2.5)  A(0) = B(0), A'(0) = B'(0), A"(0)=B"(0); »2[4"(0)— B"(0)]=1.
Thus, for »> 0,

1471 — - 1 — 1 S —
ﬁ;_?‘rg—\/py-!-u*:m/\/z N . eVar T (—140)alVy,
: O 312

a2y p

y({U, p) = i 4\/5—-; ?]3/2

and, for <0,

_ | R _ I —7 1 — b
2. Y(@w e Vet (tieVE L “VopTt(=1+iaf Ve |
(2.6) y(z, p) &2y o 4/ 2y por

The solution for #<C 0 can be obtained from the case x>0 by reversing the
sign of z, we may therefore study the solution for # > 0:

1 , ‘ : —_— _
Yo ) = o= 5 f o e e Vi a0 dp
1 e $00

rtim .
L—d 1 R
; et p—a/z eVoy= . (—1+1D)afVe dp

NEXEERL

L r—ioo

H
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which by # 7, p. 246 [13] becomes

a S @ o @ ‘ t )% | x®? 7
- e | — O —e o —1 sinf —— 4 =
2y /2yl A/ 2yl Co\ay Syl 4

(2.8)  ylw, t) =

where §, ¢ are FRESNEL integrals: 8(z)== | sin Do C(z)= | cos T e a.
2 ’ 2
1]

]

3.1. - Solution for a viscoelastic beam.

The solution of the BERNOULLI-EULER elastic beam in (2.8) does not give
one easily the solution for a viscoelastic beam by correspondence principle.
Accordingly, the solution for viscoelastic beam is obtained by applying the
correspondence principle to the transform of the elastic solution in equation
(2.6). However this solution assumes a simple form for # = 0, which can be
treated with the correspondence principle to yield the corresponding viscoelastic
solution.

From (2.8)
t 1% QA 1/4 412
- od 1A 1 I'(3/2)
(3.2) y(0, p) = (4ng I) B g

The viscoelastic solution y(0, p) is now obtained by writing the p-operator
for E in equation (3.2). For an incompressible viscoelastic material

3 QD)
B <« 5 P.D) Hence
rtico ;
(3 od Y1 1 et [2 Pyp)|1s
(3.3) y(0, 1) "*P('z') (4:& I) 2 i f PR {‘s Qs(p)} dp -

We may examine the solution for small values of ¢ by expanding the integrand
for large p (cf. [14]). For general linear viscoelastic material exhibiting instant-
aneous elasticity

1 2 Pyp) P P Puy PP L
(3.4) =dJ(p) = = —— "
3 Qp) OGP+ G PP+ @

Ep)
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Paly . (Pat G )
(3.5)  Jp) - ~[1 = (“’ - J

,(171 1’ 7)71 (IH

P TGP Gar) (1 \

IR A Potn 4 )]’ peo
Hence

N 30 4 p,\1H e Ae
2 t)y = I'(3/2) | - — et i SN f o~

(3.6) ¥(C, 1) B2 15 7 [m 5 T e J, t~0,

T, e
where A4 = ~ | Ln2_ D
“ 7)" (171

)

solution (3.6) approaches (

o4

<

472 I K

. Singe lim J(p) =

p—>~ o

= J, the first term of ahove

_Da
n

1/4
) t**which is the solution for an elastic

beam with Youna’s modulus £. For a material not exhibiting instantaneous

elasticity
J(p) P D" Py PP A L Py
In+1 ‘1}71+1 + Gn P“ + o+ ' ’
o pa V1A 313 A :

3.7 %(0, ) - 3/2 e —— ~
(3.7) y(0, (vﬂﬂ I (,,m) 132) reiy ey ’ t~0,

I, 4, . P .
where now 4 = — |22 — | Sinee S = lim { P J(p)}, the first term

4 Pa U+ Tn+1 D> *

in (3.7) is the deflection in a viscous material, (p J(p) = 1 /m). Hence for small
values of time, the deflection (at # = 0) in a beam of viscoelastic material not
exhibiting instantaneous elasticity in tension is the same as that for a material

which is purely viscous in tension.

The correspondence principle will now be used to examine the solution
further. The solution for a viscoelastic beam by the correspondence principle is

-

r+io
k(1 44) 1 ’ JL(p) - -
z, BT e e ert e—YrH(+iVE) s dp -
y(w, 1) 442 271 P2 P
r—io0
(3.8) 1
T+ico
e (1 1 i . J1ia(y _ -
-+ 7(—_” _ ot J_(fi) eVrR{(—1+ )]V 2} S lim)z dp.
44/2 2= . P32
r— {00
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‘We examine first the solution for small values of z. We theorefore consider the

expansions of the integrands for large values of p. For general viscoelastic
material exhibiting instantaneous elasticity

ﬁO ] 7)71 14 ] T”l 1 Pn~1 q?l“‘l
J14 = — o0 where op=|— and f, =-|— —_—— ==
(p) “0 + 7) —T_ 2 ’ Uo q'ﬂ ﬂo ‘L (I72 2)11 .(ITI ’

Thus

r4-io
[ y(z, 1) :M ]_ vt _ccl__k(u-g) ‘ff?ﬁﬂ B ﬁn_ L _}, .
o V2 Zai ) [ V2 p> O opsi ] p3
r—ic0 i
6.9 | ooy gp i EOZD L[ BT
4 \/9 Qi P V2 pr !
r—{o
I b : E{(—14D/V2 } 2oy 12
e to » e a0t Ly,

Hence for large values of z/i1/2, we find

( t 12 A & k2 o2 ke axkoe
| — N i T 0 0 2o
Y(@, 1) (7) k oy sm( P 4) +— [S( \/zm) ( )
ot Bo R 7) x z ok
3.10)4 o {2 ging % — |
( ) o ﬁo [ Vn ( 44 \/_nt

4
22 of k? w ooy k 8f, 1712 . FB? R 7 AR
—t} 8 sin g ) ] e
+ ( 2 ) (Vzm)} BT w Tz .

For a perfectly elastic material p,=1, ¢, = F and Pr—1;s Qu—2, Qu-1, otc. arve
zeTo,

= (1E)3H,  B=0.

Hence the solution for an elastic beam may be recovered exactly from (3.10).

3.2. - Solution for large values of ¢.

The solution for large ¢ is now examined by considering the expansions
for small values of p (cf. [15])

JU(P) = oy + B p + o(p?),
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where
P\ ) I {pg Y192 [y 0
3.11 oy = (—— and By == LENyt
( ) .G ' ERE) Po % ’
r+ice
E(141) 1 i o B (1+14) L (1+4)
3 (.’B t) Ny =l ert - - — kxo — — Lz 7 — ‘}]‘—
Y\, 44/9 2 I piz opriz 1 s V2 P V2
r+io
(3.12) | e arops qp o PUZO L B
' 4+/2 2z piE  ople
i 7. ~}+ir . 2*—-1_‘:“1: 3 12 NS
\ -1 7&(17(21 /3’1 ““;/“5——‘ - 711.’13'1) /)’1 *‘“\7“‘*—“_?: ’}‘ cee | ERRap (—140/V2 dp y

which gives

( (AR SRCH el G- S wod k2 2oy woy I
4 = K - e - »' — - ('
(@, t) Fory (n) sm( m ! 4:) -+ 5 S W Wor

N 1B, 1 NN AN
(3.13) o s S| T +Z T

a2l f, k31 22k = a2
e Bic Sl cos| —2— LT +o0 .
inile PR 4t < 2

The corresponding result for a Voragr-KELVIN beam may now be deduced from
(3.13). For a Voier-KeLVIN material the stress-strain relationship is

o=FKe +nDe,

P\t y
J(p) = so that o = 7 and f; =

B+ p’ VY

The result for an elastic beam follows, when 77 — 0. The solution valid for large
« and large ¢ (# > ) can be obtained by the method of steepest descent (efr.

[12]).
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From (3.8) we have

r4icm

k(l-+1) 1 f J(p) { I (1 1)
expyp — —

Yo, ) = ————
./(; ) 4,\/2 o P

T—i>

P2 JU (D) cx} tdp -+

N2

(3.14)

Ko=) U (e [ k= 1dd)
e WY P e T mlj2 F1f4 ;
L 4y/2 2 [ e UV R TP o tdp,

r—iw

where o = x/1.
Consider a general viscoelastic material, so that

PaP?+ Py PV A D
J(p) = == — i1 . o
D1 P + P+ e F g,

then J(p) = (a/p){1 +b/p + o(1/p?)} where a= p,/us: a0nd b= (P, o/p.+

- Qn/Qn-%-l); p—>oco.

Now

T (14 %) (14 ) 1
_ /2 T1id — 1 1t S
P ’\/:?: 27'1 J1 ;(p) « 7 /\/5 o al! pl * + 0(})3[4) H

- L(—1+1)
P 42

k(—1+4)

i
- - 14 ;m1ia o I
4‘/;; xa"p ' 0(3,:3/4)

prEdYi(p) o= p -

and

J(p) ai/t Il b |
7)3/2 = ,;;?I‘l l o —’I') T 0 ;)’2' .

We thus counsider

r4in r4-iom

I(w, t) == f fi(p) et ® dp -+ f fo{p) et dp,
where
(1L i) s Bl 1)

A

bide T \‘/3

g n(p) = p— 7 S ali piis
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and
okt —4) atit k(= 1-41)
falp) = Py A2 il G(p) = p + **ﬁ“ oatptit,
’ /17 13 P .,
Now g, (p)= 0 => p==p, = —;) @'’ ¢ o3 hence the large p calculation

is consistent with large «. The direction of steepest descent ¢, is such that
gi(py) 7% €™ is real and negative, thus g,= — /3. Similarly 0(p)=0 = p=
~ kyss ; .
= Py = (i) a'® em oM and g, :g . The integrands have a branch point
at p = 0. We take the branch cut along the imaginary axis and consider a
two sheeted Rimaany surface. Deform the first integral into the path of steepest
descent through the saddle point p, and the second integral into a steepest path
through the saddle point p,. The integral (3.14) is now estimated by the con-
tributions from these saddle points. Applying LAprace’s formula (cf. [12]),
we have

A\ 28 =3 QMM s ity I _ 33 ()i
R = = U ; Ve 13 o4 /s
Y@, 1) = ].;) B3 {112 o116 1\/5 COS( a /1: @i ot
3.15
( ) ) 3\//5 4\ 1
— sin | — - alld g3 g ] {e>1, t — co0).

4. - Dynamical response of a viscoeelastic beam including the effects of rotat-
ory inertia and shear.

When the correction for rotatory inertia is applied, the impulsive motion
is governed by

(4'1) Yoo — k2 Yauee ";‘ 03 k* Yoraw = (S(.’I)) 6“) .

The solution for viscoelastic beams can be obtained by the correspondence
principle as before

r+ico

1 . et e— oM up —wf2m ntVesk » —a Ve
Yla, 1) == — = e e (2
Y@, 1) 251 j V2 PV od T pt — 4 [p* 12 — (kph/od )/ o k% p? — 4112 !

r—iw
(4.2)
r-ice
ept 6——[(9/2)-1}7'-!-()7/‘21()(g.l)""\/g.llc p —1)H e

1
2 f V2 P/ pJIE pt — 4P K (Pl od ) A/ g i pE — 4]H?

re—ix

dp ,

where J = J(p).
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We examine the solution at first for small values of ¢. We thus consider the
expansions of the integrands for large values of p. For the general viscoelastic
materials exhibiving instantaneous elasticity, the asymptotic expansion of
J(p), p— oo, is

b ¢ »,
J(p) = a ( 4 e — ), where « = L’,
1) ?).. (Iﬂ
)n— Gn— 1)71”2 (71'*2 Gn~ ')72- ' [.’5_
b-_—_:7 1_.._.1 1’ c:I__.{__.“__{._l.L__]_§A._T’.1’etC"
Pn Gn Pn qn Prdn ([;;
we thus find
e—ulk e— (o) (o) Pz (p At x)? —-
yla, t) = T t— S > H(t —+/ag @) -
(4.3)
+ 0(t2) + o(t —A/wo x)* H(t —+/ap @), t~0,

where H is the unit step function defined by
0, t<< 0
H(@)=1y 1/2, t=0.
1, >0

The solution for large ¢ is examined by expanding the integrands for small
values of p. The asymptotic expansion of J(p) for small p is

J(p):‘x}.[l_}_/))17}‘*}“')/17’:2”%"“]7 p">0;
where
Po P n Pe 4 M, 4
oy = By =— —— == = — == 4 = ete
YT g’ b m % T a tews @

We may now show that

Y@, 1) ~ ('i—;ll* gL/ sm(\/w‘ gy ’Z) - (e [S(.,:(QLﬂ4> _

-

¥ 4t S 2k \ zakt
o)A oo )tA ] (o xt =z
(4.4) 1 o Ao + _(‘ l)m . {’—lsm Lo )+
\/ 2alt 2/l 1124 ik 4

i — . {oyx® =& a? )
+ =4/ oy sin| == —Z | 4 Of — {(w < B, £3>1).
4 4kt 4 31
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The asymptotic estimate of the solution for large values of # can be obtained
by the method of steepest descent. Let

7

@ t
w=0tkp, & =—— and ¥

VZk T VEk?

using the above relations and rewriting the results in the original variables
p, = and ?, the integrals in (4.2) assume the form

T4 iw
o1/ J112 gxlfp—1in)]
= | e dp,
27l \/21)\/1)2J—~4f(1))

r—gco

where
I i
f(p) = [p*J £ p 2 A/p* ] — 4P, f=-.

We can now find the asymptotic estimate for large # by the method of steepest
descent. The saddle points are at f'(p) = 5. We consider at first the case of 8
small, to do this we find approximations to f(p) for large p.

For a KmrviN material J(p) = 1/(a -+ bp) where a =K, b =n/r/gk,

572 43/2
2olen o v

(4.5) Yz, 1) ~ e B p g2 (/1) (B ~0, @ - o0) .

Also the small p calculuation is consistent with large . In this case, we may
show that

Ql 2glia (5/4

@ 57
(4.6) Y@, 1) ~ VT GOS(;,;/—(2 + -;,—-) >1, 2>1).

5. — If the correction due to shear is also taken into account the motion
is then governed by the TimosEENKO theory. For impulsive motion, equation
(1.5) becomes

&' i

2
(5.1) Yeo— k2 (1 + &) Youee -+ 0?, k? Yoo e Yo = O(m) 6(1) .

0
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Although the analysis is very tedious this time, the solution for viscoelastic
beam utilizing equation (5.1) can be obtained in the same way as for the BER-
NOULLI-EULER and RAYLEIGH beams treated earlier. In this case, the
corresponding results are (cf. [7])

e— /2 ap) | = (t — \/(mg, )2

Y@, t) ~ H(t —1/age v) -

2(ap)t® (1 — &) k2 21

(5'2) e— /0ty e (f — ,\/(‘[Z) )2

a1 — &) I 21

+0(t —+/age’ @ H(t —+/age’ x)+0(t —+/pa ) H(t —+/ag @)

H(t —+\/ag o) +

and
(o)t [ x (Qal)l/") (.r (95‘1)1“) ] (oo, P}
Ylx, 1) = S — L N o 1/2 .
Y@, 1) 2k ( \/ 2akl \/2zkt © A/ ak
- sin Vew e @) (‘Q“‘)f_/f (B e (1 -+ &)}
(5.3) At D) 2y/qk v |\ 8 4 ’

oo Vi) + (£ Svama s ) (VIS o[ 2

(x < BB,  ¢t31).

The method of steepest descent may be used to find the solution for large values
of w as for the RAYLEIGH’S theory in (4). In all these cases if the impulse is
applied at an arbitrary point #, then the results can be obtained by writing
@ —a, for » in the corresponding solutions for the impulse at » = 0.

6. - The propagation of longitudinal and torsional waves in a semi-infinite bar.

The propagation of longitudinal waves in a semi-infinite viscoelastic bar
has been treated in [8]. The present investigation includes the study of longitud-
inal displacement and also obtains the final shape of the rod. The solution
for the torsional motion being of identical nature can be examined similarly.

The governing equations for a viscoelastic bar undergoing longitudinal
vibrations are

do 02 u ou
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Eliminating ¢ and ¢ we have

0%
da2

(6.2) o D2 P(D)u = Q(D)

=

The corresponding equation for the elastic rod is

.a
@
2
=
S|

(6.3) D*u =c¢ where Gy ==

o
i
rc!

Thus the solution for viscoelastic problem can be obtained by applying correspon-
dence principle. If an impulse of unit magnitude is applied at 2 == 0 and ¢ =0,
then the solubion of viscoelastic bar is given by

T4+ ioo
LT[ (eIpR \
w(z, 1) = o g ert exp{— ap(oJ) 1} dp
r—iwx
and
r+_ico
! » ytan!
olw, 1) == —5— | ertexp{—ap(e])i*}dp.
r—ico
Now for large p,
. a, 1, | 112
awie = 3 where = o 2|,
n=o P" n
] )H 112 ')71_ (n—
@y = T(Q L) Bat _ul, ete. ;
e Gn Pr Gn I
r+im
e ma aity bofal a2 1
@z, 1) = — PN N 2 —agx| el -+ dp.
ol@, 1) 20 { p o opri 2 3 no P I
r—iw

When the exponential factor in the integrand is exp(pt), expanding the integr-
and for large values of p, gives the solution for small values of ¢. In this case
the factor is exp(t — a, @) p; the expansion for large p therefore gives the solut-
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ion for small values of ¢t — a, @, i.e. it gives the solution near the wave front

o, t)= — %% 8t — ap ) — ™4 -
(6.4)

Z

. {~ ay ~;«({Iiw~ — m) (t—aq@) - Ot — a, m)z}
near the wave front. Thus the impulse applied to the end of a semi-infinite
viscoelastic rod exhibiting instantaneous elasticity in tension, is transmitted
down the rod with velocity 1/a, and attenuation a,. The attenuated impulse

is followed immediately by a wave of finite amplitude whose magnitude at
its head is a, x exp(— @, 2). Also

r—}:iw
e~ a® ]
w(w, t) = — 2 exp(t — a, %)
- ay 1 N 1
. ; -+ 7—)-2 (g — ay @y @) 2—)3 (a4 — a,a, ) -+ ... ¢ dp,
or
1 —q; 2
u(w, t) == . H{f —a,z) e ™ {an + (@, —aya, ) (I — ay ®) -
(6.5) (= a
‘%‘(“2““1“21’)—5‘;&‘““+0(t““ow)3}y t—a,2 ~0.

For a material not exhibiting instantaneous elasticity

4 B |
2 . J . —
{oJ(p)} 1)1/2{1 - +0(p2)},

""‘ i/2 1 n— n
where A = (9_1{) and B=—- (ZLJ - q_) ,
Qn+1 2 Pn An+y
r+.i:o
1 ABx 1
T e — Pt gy — 1/2y. -— e -
a(, t) Py I e?t exp(— Aaptl?) {1 pire 0(7))} dp
(6.6) r—i
~— Awx

— zl?‘ 11}2 P
exp( = ) C[ERiE—2B e O@t /)], ¢ small.

= m

The first term is the stress distribution in a viscous material (B = 0). Hence
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for small values of the time, the stress distribution in a material not exhibiting
instantaneous elasticity in tension, is the same as that for a material which
is purely viscous in tension. Also, for small ¢,

A - Ax
w(w, 1) = — [Zn—1/2t1/2 em AN 4 @ Trfe )—177]

54

A2 B« A2 a2 A A .
—_— o Ipfe o Cogije pedtwan |
I [(t v 2 ) Erfe 20172 172 t e ] [ t~0.

We now examine the solution for large values of time. For the general viscoelastic
material, the asymptotic expansion of J(p) for small p is

J(p) = o (1 -+ Bip 4+ 71p* -+ .0, p~0,
where
el 7—)2 et 21 —_ —(—I—I
= %’ A Po G ote.

Hence

— pe J—

o(w, p)= —1-+(ooy)/? wp — 5 (w? ooy — @fy \/9051) -+ 0(p®) .
And
(6.8) olwy, 1) —~0 as ¢—oco.
Also since

- (o' 72 [} — a? _
oy 1= [ (B ) oL ) ]

4 (4

.\ 1/2
(6.9) w(w, 1) — (0—1) as {—>o00, (g 0).

<

For large values of ¢ the stress tends to zero while the displacement approaches
a finite limit (x/p)*/* which vanishes if p, = 0.

We now consider the effect of torque I applied at the end v =0 and
time ¢== 0. The solution of the torsional motion may be obtained by applying
correspondence principle.
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Angular twist :

rt+ic
! M [ et 1/2 - ‘ 1/2
(6.10) 0 =5mi o1 } — {BeI@}= exp[—pa (30 T(p)) 4] ap .
Shearing stress :
1 Lion
(6.11) = —g= | en exp[— px (30 J (p))*/2] dp.

The integrals in (6.10), (6.11) are of the same form as those obtained for u{ax, t)
and o(w, ?) for the longitudinal vibrations of viscoelastic bars examined earlier.
Hence the solutions for 0(w, t) and s(z, ¢) can be written down by comparison.

Conclusions.

Investigation of the asymptotic solutions for the lateral motion reveals
that the solution of a viscoelastic beam, exhibiting instantaneous elastic response
consists of two parts; the first part is a contribution mainly due to the elastic
nature of the beam, while the second part is a characteristic of the viscoelastic
material, from which the beam is made. The maximum deflection of beam is
observed at the position where the impulse is applied; and the deflection goes
off to zero away from this point. For small values of time, the viscosity effects
are appreciable while for large times (¢ — co), the viscous part of the solution
goes to zero as O(1/t1/%). The effect of rotatory inertia and shear deformation
on the beam deflection is considerable for small ¢ but negligible at large ¢. Im-
pulse applied to the end of a viscoelastic bar which exhibits instantaneous elast-
icity in tension is transmitted with velocity 1/a, and attenuation a,, (6.4).
The attenuated impulse is followed immediately by a wave of finite amplitude
whose magnitude at its head is a@ exp(— a,»). The displacement « vanishes
exponentially with . For small ¢, the stress distribution in a material not exhib-
iting instantaneous elasticity in tension is the same as that for a material which
is purely viscous in tension. For large ¢ (t—c0), the stress tends to zero while the
displacement approaches a finite limit [p,/q,0]*/2. For torsional motion , however,
the solution is mathematically identical with that for the longitudinal motion.
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Abstract.

The problem considered is that of an infinitely long viscoelastic beam subjected to an
impulsive excilation. The dynamical motion so set up is analysed according to the models
of Bernoulli-Fuler, Rayleigh and the Timoshenlko beams. The small and
large time solulions are oblained in all these cases using asymplotic methods. The process
of expanding integrands and the method steepest descents are found suitable for carrying
out asymplotics. The effects of the rotatory inertia and shear ave studied. The effect of im-
pulsive pressure applied to the end of « semi-infinite beam is also studied by considering
the longitudinal motion. The resulls for lorsional motion can be obtained by comparison.



