S. P. SINGH (*)

On Sequence of Contraction Mappings. (**)

1. – Let X be a metric space. A mapping T of the space X into itself is said to be a contraction map if there exists a number k such that

$$d(Tx, Ty) \leqslant k d(x, y),$$

for any two points $x, y \in X$, where $0 \le k < 1$. Every contraction map is continuous.

The classical contraction mapping principle of Banach states that if (X, d) is a complete metric space and $T: X \rightarrow X$ is a contraction mapping, then T has a unique fixed point.

Contraction mappings on metric spaces have been of great interest for many years. In the present paper we study a sequence of contraction mappings and fixed points. An application to differential equation has also been given.

A question to ask is the following:

In a complete metric space does the convergence of a sequence of contraction mappings to a contraction mapping T imply the convergence of the sequence of their fixed points to the fixed point of T ? [3].

A partial answer to this question has been given [1]. «Let X be a complete metric space, and let T and T_n (n=1, 2, ...) be contraction mappings of X into itself with the same Lipschitz constant k < 1, and with fixed points U and U_n respectively. Suppose that $\lim_{n \to \infty} T_n(x) = T(x)$ for every $x \in X$. Then

 $\lim_{n\to\infty} U_n = U_n$. The restriction in this theorem that all the contraction mappings have the «same Lipschitz constant» is very strong.

^(*) Indirizzo: Memorial University of Newfoundland, St. John's, Newfoundland, Canada.

^(**) Ricevuto: 20-I-1969.

2. - We have the following result:

Theorem 1. Let X be a complete metric space and let T_n (n=1, 2, ...) be contraction mapping of X into itself with fixed points U_n and with Lipschitz constants k_n such that $k_{n+1} \leq k_n$ for each n.

Suppose that $\lim_{n\to\infty} T_n x = Tx$ for every $x \in X$, where T is a mapping from X into itself. Then T has a unique fixed point U and $\lim_{n\to\infty} U_n = U$.

Proof. Since $|T_n x - T_n y| \leq k_n |x - y|$, therefore

$$\lim_{n\to\infty} |T_n x - T_n y| \leqslant \lim_{n\to\infty} k_n |x - y|.$$

Since $k_{n+1} \leq k_n$ for each n, it follows that $\lim k_n < 1$. Hence $\lim_{n \to \infty} T_n x = Tx$ is a contraction mapping. Moreover, k_1 will serve the purpose of a Lipschitz constant for T_n (n = 1, 2, ...). Thus the proof follows from theorem 1.2 in [1] by replacing k by k_1 .

Remark. However, if the LIPSCHITZ constants are such that $k_{n+1} \ge k_n$ for each n, the theorem is, in general, false.

In order to illustrate the theorem we take the following example: Consider

$$T_n: [0, 2] \to [0, 2],$$
 defined by $T_n x = 1 + x/(n+1)$ $(n = 1, 2, ...).$

Then $\lim_{n\to\infty} T_n x = Tx = 1$ for every $x \in [0, 2]$. The Lipschitz constant is $k_n = 1/(n+1)$ (n=1, 2, ...). Thus $k_1 = 1/2$ will serve the purpose for all mappings to be contraction. The corresponding fixed point for each T_n is $U_n = (n+1)/n$ (n=1, 2, ...). Lim $U_n = 1$, where U = 1 is a unique fixed point for T.

3. – As an application of Theorem 1, we give the following proposition due to Professor J. R. Dorron, on the same lines as given in [3]. Let D be an open subset of the plane, let $(a, b) \in D$, let M > 0 be a real number, and let $\{k_i\}$ be a decreasing sequence of positive real numbers. For each i = 0, 1, 2, ..., let f_i be a real valued continuous function defined on D such that

$$|f_{i}(x, y)| \leqslant M$$
 for all $(x, y) \in D$,

and

$$|f_i(x, y) - f_i(x, z)| \le k_i |y - z|$$
 for all $(x, y), (x, z) \in D$.

Suppose also that the sequence $\{f_i\}$ converges to f on D. Let h be such that $0 \le k_i \ h < 1$ for all i = 0, 1, 2, ..., and such that $G = \{(x, y) \ with \ | \ x - a \ | < h \ and \ | \ y - b \ | < < M \ | \ x - a \ | \}$ is a subset of D. Then the sequence $\{y_i\}$ converges on I = [a - h, a + h] to y_0 , where, for each $i = 0, 1, 2, ..., y_i$ is the unique solution on I of the initial value problem

$$\begin{cases} y(a) = b \\ y'(x) = f_i(x, y(x)). \end{cases}$$

Proof. Let X be the set of all real valued functions defined on I with graph lying in G and with Lipschitz constant less than or equal to M. Then (X, d) is a complete metric space with d as supremum metric. For each i = 0, 1, 2, ... and each $g \in X$, define $T_i(g)$ at each $x \in I$ by

$$T_i(g) x = b + \int_a^x f_i(t, g(t)) dt$$
.

It can be easily seen that, for each $i = 0, 1, 2, ..., T_i$ is a contraction mapping from X into itself with Lipschitz constant less than or equal to k_i h. For each $g \in X$, $x \in I$ and i = 1, 2, ...,

$$T_i(g) \ x - T_0(g) \ x = \int_a^x [f_i(t, g(t)) - f_0(t, g(t))] \ \mathrm{d}t \ .$$

Since the sequence of integrands converges pointwise to zero and is uniformly bounded by M, the Lebesgue bounded convergence theorem guarantees that the sequence of integrals goes to zero is $i \to \infty$. Therefore, the sequence $\left\{T_i(g)\right\}$ converges pointwise to $T_0(g)$ on I. This implies by the equicontinuity of $\left\{T_i(g)\right\}$ on the compact set I, that the sequence $\left\{T_i(g)\right\}$ converges uniformly to $T_0(g)$. Hence, the sequence $\left\{T_i\right\}$ converges to T_0 on X. By Theorem 1, the sequence $\left\{y_i\right\}$, where y_i is the unique fixed point of T_i for each i=1,2,..., converges to the fixed point y_0 of T_0 . The result follows since these fixed points are the unique solutions of the initial value problem.

Definition 1. A mapping T of X into itself is said to be locally contractive if for every $x \in X$ there exist ϱ and λ ($\varrho > 0$, $0 < \lambda < 1$) which may

depend on x such that

$$p, q \in s_{\varrho}(x) = [y/d(x, y) < \varrho]$$

implies

$$d(Tp, Tq) < \lambda d(p, q),$$
 $p \neq q.$

Definition 2. Let (X, d) be a metric space and $\varrho > 0$. A finite sequence $x_0, x_1, ..., x_n$ of points of X is called ϱ -chain joining x_0 and x_n if

$$d(x_{i-1}, x_i) < \varrho$$
 $(i = 1, 2, ..., n)$.

The metric space (X, d) is said to be ϱ -chainable (well-linked) if for each pair (x, y) of its points there exists a ϱ -chain joining x and y.

4. - We prove the following result:

Theorem 2. Let (X, d) be a complete ρ -chainable metric space.

Let $T_n\colon X\to X$ be a function with at least one fixed point U_n for each $n=1,\ 2,\ ...,\ and$ let $T\colon X\to X$ be a locally contractive mapping with fixed point U. If the sequence $\{T_n\}$ converges uniformly to T, then the sequence $\{U_n\}$ converges to U.

Proof. (X, d) being ϱ -chainable we define, for $x, y \in X$,

$$d_{q}(x, y) = \inf \sum_{i=1}^{n} d(x_{i-1}, x_{i}),$$

where the infimum is taken over all ϱ -chains x_0 , x_1 , ..., x_n joining $x_0 = x$ and $x_n = y$. Then d_ϱ is a metric for X satisfying

$$(1) d(x, y) \leqslant d_o(x, y)$$

and

(2)
$$d(x, y) = d_{\varrho}(x, y) \qquad \text{for} \quad d(x, y) < \varrho.$$

From (1), (2) and completeness of (X, d) it follows that (X, d_{ϱ}) is complete. It can be easily seen that T is a contraction mapping in the metric space (X, d_{ϱ}) [2].

Let $\varepsilon > 0$ and choose a natural number N such that $i \ge N$ implies $d_{\varrho}(T_i(x), T(x)) < \varepsilon (1-k)$ for all $x \in X$, where k < 1 is a Lipschitz constant for T. Then, if $i \ge N$,

$$\begin{split} d_\varrho(u_i\,,\;u) &= d_\varrho\big(T_i(u_i),\;T(u)\big) \\ &\leqslant d_\varrho\big(T_i(u_i),\;T(u_i)\big) \,+\,d_\varrho\big(T(u_i),\;T(u)\big) \\ &< \varepsilon\;(1-k)\,+k\;d(u_i\,,\;u)\;. \end{split}$$

Hence, $d_{\varrho}(u_i\,,\,u)<\varepsilon$ for all $i\geqslant N.$ This proves that $\left\{u_i\right\}$ converges to u.

References.

- [1] F. F. Bonsall, Lectures on Some Fixed Point Theorems of Functional Analysis, Tata Institute of Fundamental Research, Bombay, India 1962.
- [2] M. EDELSTEIN, An extension of Banach's contraction principle, Proc. Amer. Math. Soc. 12 (1961), 7-10.
- [3] S. B. Nadler (jr.), Sequences of contractions and fixed points, Pacific J. Math. 27 (1968), 579-585.

* * *