CAROL SINGH (*)

Two Inversion Integrals. (**)

1. – TA LI [4] gave inversion integral for an integral transformation which involves a Chebyshev polynomial in the Kernel. A similar problem involving Legendre polynomial in the Kernel is solved by Buschman [1]. D.V. Widder [5] applied the methods of Laplace-transformation to solve such problems. In [2] we have solved the integral equation with Bessel functions in the Kernel with a different method. Applying the same method in the present paper we solve two integral equations with modified Bessel function $K_{\nu}(x)$ and the Struve's function $H_{\nu}(x)$ in the Kernel.

Modified Bessel function $K_{r}(x)$ is defined as

(1.1)
$$K_{\nu}(x) = \frac{\pi}{2} \frac{I_{-\nu}(x) - I_{\nu}(x)}{\sin(r\pi)}$$

and the STRUVE's function $H_{\nu}(x)$ as

(1.2)
$$H_{1}(x) = \sum_{m=0}^{\infty} \frac{(-1)^{m} (x/2)^{v+2m+1}}{\Gamma(m+(3/2)) \Gamma(v+m+(3/2))}.$$

2. - Results required in the proof.

If $K_{\nu}(x)$ and $I_{\nu}(x)$ are the modified BESSEL functions, then the K-transform

(2.1)
$$\int_{0}^{\infty} f(x) K_{r}(xy) (xy)^{\frac{1}{2}} dx = g(y)$$

^(*) Indirizzo: Department of Mathematics, Government Polytechnic Institute, Raigarh (M. P.), India.

^(**) Ricevuto: 3-VI-1969.

has the inversion formula

(2.2)
$$\frac{1}{\pi i} \int_{a-i\,p}^{c+i\,\infty} g(y) \, I_{\nu}(xy) \, (xy)^{\frac{\nu_{\nu}}{2}} \, \mathrm{d}y = f(x).$$

Similarly the H-transform, defined as

(2.3)
$$\int_{0}^{\infty} f(x) H_{y}(xy) (xy)^{1/2} dx = g(y)$$

has the inversion formula

(2.4)
$$\int_{0}^{\infty} g(y) Y_{\nu}(xy) (xy)^{\frac{\nu}{2}} dx = f(x), \qquad -1/2 < \nu < 1/2.$$

Here $Y_{\nu}(x)$ is the Weber's Bessel function of second kind and order ν . Now in [3] (p. 209, (59)) putting $\mu = 1$ and replacing a by $z \sqrt{y}$ we get

(2.5)
$$\int_{y}^{\infty} x^{-v/2} K_{\nu}(z \sqrt{xy}) dx = \frac{2}{z} y^{-\nu/2} K_{\nu-1}(zy).$$

Similarly from [3] (p. 199, (88)) we get

(2.6)
$$\int_{0}^{y} x^{1/2} K_{\nu}(z \sqrt{xy}) dx = \frac{2}{z} y^{1/2} H_{\nu+1}(zy), \qquad \nu > -3/2.$$

3. - Theorem I.

If the integral equations

(3.1)
$$\int_{0}^{x} K_{\nu}(z\sqrt{xy}) f(y) dy = \varphi(x, z)$$

and

(3.2)
$$\int_{0}^{\infty} x^{-r/2} \varphi(x, z) dx = \psi(z)$$

exist, then the solution of (3.1) is given by

(3.3)
$$f(y) = \frac{y^{1+(\nu/2)}}{\lim_{z \to 1}} \int_{z-1}^{z+i\infty} I_{r-1}(zy) \{z^2 \psi(z)\} dz.$$

The inversion formula (3.3) is in the terms of function $\psi(z)$ and to find $\psi(z)$ is not difficult since it is an easy transformation of the known function $\varphi(x, z)$.

Suppose $\varphi(x, z)$ and $\psi(z)$ both exist, then putting the value of $\varphi(x, z)$ in (3.2) from (3.1) we have

(3.4)
$$\int_{0}^{\infty} x^{-\nu/2} \left\{ \int_{0}^{x} K_{\nu}(z\sqrt{xy}) f(y) dy \right\} dx = \psi(z),$$

changing the order of integration we get

(3.5)
$$\int_{0}^{\infty} f(y) \left\{ \int_{y}^{\infty} x^{-r/2} K_{r}(z \sqrt{xy}) dx \right\} dy = \psi(z),$$

making use of the result (2.5) we get

$$2\int_{0}^{\infty} y^{-\nu/2} K_{\nu-1}(zy) f(y) dy = z \psi(z).$$

Now writing this in the following form

$$\int_{0}^{\infty} \left\{ y^{-(r+\frac{1}{2})} f(y) \right\} \sqrt{zy} K_{r-1}(zy) dy = \frac{1}{2} z^{3/2} \psi(z)$$

and making use of (2.1) we get (3.3).

4. - Theorem II.

If the integral equations

(4.1)
$$\int_{x}^{\infty} H_{\nu}(z\sqrt{xy}) \ g(y) \ dy = \varphi_{1}(x, z), \qquad -1/2 > \nu > -3/2,$$

and

(4.2)
$$\int_{0}^{\infty} x^{\nu/2} \varphi_{1}(x, z) dx = \psi_{1}(z)$$

exist, then the solution of (4.1) is given by

(4.3)
$$g(y) = \frac{1}{2} y^{1-(\nu/2)} \int_{0}^{\infty} Y_{\nu+1}(yz) \left\{ z^{2} \psi_{1}(z) \right\} dz.$$

As in previous problem putting the value of $\varphi_1(x, z)$ in (4.2) from (4.1), we have

$$\int_{0}^{\infty} x^{v/2} \left\{ \int_{x}^{\infty} H_{v}(z \sqrt{xy}) g(y) dy \right\} dx = \psi_{1}(z) ,$$

changing the order of integration we get

$$\int_{0}^{\infty} \left\{ \int_{0}^{y} x^{\nu/2} H_{1}(z \sqrt{xy}) \, \mathrm{d}x \right\} g(y) \, \mathrm{d}y = \psi_{1}(z) .$$

Again making use of (2.6) we have

$$\int_{0}^{\infty} y^{r/2} H_{r+1}(zy) g(y) dy = \frac{1}{2} z \psi_{1}(z).$$

Writing this in the form of (2.3) and applying the inversion formula (2.4) we get (4.3).

My thanks are due to Dr. V. K. VARMA for his help and guidance.

References.

- [1] R. G. Buschman, An inversion integral for the Legendre transformation, Amer. Math. Monthly 69 (1962), 288-289.
- [2] C. Singh, Inversion integrals for the integral transforms with Bessel function in the Kernel, Riv. Mat. Univ. Parma (2) 9 (1968), 339-341.
- [3] A. Erdelyi, Table of Integral Transform, Vol. 2, McGraw-Hill, New York 1954.
- [4] TA LI, A new class of integral transforms, Proc. Amer. Math. Soc. 11 (1960), 290-298.
- [5] D. V. Widder, The inversion of a convolution transform whose Kernel is a Laguerre polynomial, Amer. Math. Monthly 70 (1963), 291-293.

* * *