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Squeeze Properties for Graphs. (*%)

1. - Introduction.

Let P be any property that a graph may possess. A graph & is said to
be eritical with respect to property P if G has property P but the graph ¢ —v
does not have property P, for each point v of G. Similarly, a graph @ is said
to be minimal with respect to property P if G has property P but the graph
G — ¢ does not, for each line ¢ of @. DUKE [7] and Younes [12] have studied
genus-minimal graphs; CHARTRAND, KAUGARS and Lick ([8], [8]) have consi-
dered critically n-connected graphs; and Lick ([8], [9]) has examined minimally
n-line-connected graphs. The renowned Four Color Problem hag stimulated
a great deal of research into the chromatic number for graphs. For example,
Dirac (see [4], [5], [6]) has studied graphs which are critical with respect to
chromatic number x.

In contrast to the situations described above, it may be that the removal
of an arbitrary point (or line) yields a new graph which still has property P.
A graph @ is said to be durable with respect to property P if G has property P,
and so does the graph G —w, for each point v of ¢. Similarly, G is said to
be permanent with respect to property P if the graphs ¢ and G — ¢ both have
property P, for each line ¢ of ¢. Graphs which are durable (or permanent)
with respect to having chromatic number n» have been studied in [10].

The purpose of the paper is to extend the investigation of [10] to a large
class of properties of graphs, including the chromatic number, for which some
general results may be obtained. To this end we introduce the notion of a
squeeze property.
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2. « Squeeze properties for graphs.

The notation H <@ indicates that H is a subgraph (not necessarily induced)
of the graph @. A property P is said to be a squeeze property if, whenever H
and G have property P and H< H'<@, then H' also has property P. Param-
eters which give rise to squeeze properties include the chromatic number
(the property P would be: X(@) = n), genus, BETTI number, clique number,
point-arboricity (see [2]), and point-partition number (see [10]). Connectivity
and line-connectivity are parameters which do not give rise to squeeze prop-
erties. The following theorem relates minimality to criticality, and durability
to permanence, for the class of properties we are considering.

Theorem 1. With respect to any squeeze property P:
(1) If G has no isolated points and is minimal, then @ is eritical.

(il) If G is durable, then G is permanent.

Proof. (i) Let v be any point of G. Since G has no isolated points,
there is a line ¢ incident with ». Since G is minimal with respect to property P,
the graph ¢ — ¢ does not have property P. But @ —v<@ — e¢< @, and since P
is a squeeze property, @ —v does not have property P; i.e., G is critical
with respect to property P.

(ii) Let ¢ be any line of @, and let v be a point incident with e¢. Since @
is durable, @ — v has property P. But again G —v<@ —e<@, and since P
is a squeeze property, ¢ — ¢ has property P. Hence @ is permanent with
respect to property P.

Further examples of squeeze properties abound, as the next theorem and
the comments following it indicate.

Theorem 2. The property of «being durable with respect to the squeeze
property Py is itself a squeeze property.

Proof. Let H and G both be durable with respect to the squeeze prop-
erty P, with H<H'<@. Since H and @ both have property P, it follows
that H' also has property P. It remains to show that H’ is durable in this
respect. Let v be any point of H'. Then H—v<H'—v<G—v. But H and G
are both durable, so that H—v and ¢ —v still have property P; hence
H'—w has property P. This completes the proof.

The above theorem remains valid if the word « durable » is replaced with
the word « permanent ». Furthermore, if the original squeeze property P is
defined in terms of a parameter taking on integral values, the theorem is also
true for « durable » replaced by «critical » or « minimal ». The proofs, being
routine, are omitted.



o
<t

[3] SQUEEZE PROPERTIES FOR GRAPHS 128

3. - Critically durable and critically permanent graphs.

A graph G is said to be eritically durable with respect to property P if @ is durable
with respect to property P and critical with respect to the property of being
durable. That is: (i) G has property P; (ii) G — v has property P for each
point » of G; and (iii) for each point v of G, there is a point « of G — v such
that the graph G — v —wu does not have property P. Correspondingly, a
graph @ is said to be eritically permanent with respect to property P if G is
permanent with respect to property P and critical with respect to the property
of being permanent; specifically: (i) G has property P; (ii) G — ¢ has prop-
erty P for each line ¢ of G; and (iii) for each point v of &, there is a line e
of ¢ — o such that the graph G — v — ¢ does not have property .P.

The following theorem will be helpful in providing examples of critically
durable graphs.

Theorem 3. The property « being critically dwrable with respect to ithe
squeeze property Py is itself a squeeze property.

Proof. Let H and G be critically durable with respect to the squeeze
property P, with H<H'<<(G. Then H and G are both durable with respect
to P, and it follows from Theorem 2 that H’ is also. Now let » be a point
of H', and hence also of G&. Then there exists a point # of G — v such that
G—ov—u does not have property P. Also, » must be a point of H'—u,
for otherwise H'—ov<G@—v—u<@, which would imply that G—v—u
has property P. The relationship H'—v—u<G—v—u<G now shows that
H'—9v—u does not have property P. Hence H' is critically durable with
respect to P, thus completing the proof.

Similarly, one may show that « being critically permanent with respect to
a squeeze property » is also a squeeze property. In order to give examples
of critically durable and critically permanent graphs, we define the following
graphs. The complete n-partite graph K(p,, ..., p.) has its point set V partit-
ioned into n disjoint nonempty subsets V,, where |V,|=1p, (i=1,..,2),
such that a line joins two points # and v of V if and only if w € V; and v € V,
where j £ k. If p,=1 (=1, ..., n), then the resulting graph is the complete
graph K, with » points. If p,=2 (=1, ..., n), we will designate the result-
ing graph by K ., . We use the symbol 2K, to denote the disconnected graph
having two components, each isomorphic to K,. The graph 2K,-+} ¢ is 2K,
with one line added; note that this gives a connected graph. See Fig. 1 for
the graph 2K, e. The one point union of two complete graphs K,, denoted
by K. K., is two copies of I, with two points identified, one from each copy.
See Fig. 2 for H,-H,.
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For each positive integer n>>3, we define the graph D, as follows: let
H,=H,=K,,; and Hy;=H,= {v}. To the disjoint union

add n#—1 lines joining H, to H, (i= 3, 4); add n —2 lines joining H, to H,

Fig. 1.

(i=3, 4), but in such a manner that in the graph D, two points of H, have
degree n—1. See Fig. 3 for the graph D,.

Fig. 2.

The graph 2K, is critically durable and ecritically permanent with respect
to having chromatic number n. However, this graph is not connected. The
following examples will be connected graphs. The graph K,,, is critically
durable, but not critically permanent with respect to chromatic number .

The graph 2K,-- ¢ is both critically durable and critically permanent with



[5] SQUEEZE PROPERTIES FOR GRAPHS 127

respect to chromatic number n. With respect to the number of points and
lines, 2K, ¢ is the unique smallest connected critically durable n-chromatic
graph (see [10]). It is easy to observe that any critically durable n-chromatic
graph is a subgraph of K_, . Theorem 3 shows that, if 2K,+ e<G<K,

n2) ?

Fig. 3.

then @ is critically durable with respect to having chromatic number #. One
might suspect that any critically durable n-chromatic graph is a supergraph
of 2K, e, but this is not the case. The graph D, is critically durable with
respect to chromatic number n, but is not a supergraph of 2K,4-e. The
graph D, is also critically permanent with respect to chromatic number n.
The graph K, K, is critically permanent with respect to chromatic number .
‘With respect to the number of points and lines, this is the unique smallest such
graph (see [10]).

4. - Minimally durable and minimally permanent graphs.

A graph G is said to be minimally durable with respect to property P it G
is durable with respect to property P and minimal with respect to the property
of being durable. Similarly, & is said to be minimally permanent with respect
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to property P if @ is permanent with respect to property P and minimal with
respect to the property of being permanent. For example, 2K, is both minimally
durable and minimally permanent with respect to having chromatic number y
as is the graph D, defined in Section 8. The graph K,-K, is minimally per-
manent, but not minimally durable, with respect to chromatic number n. The
graphs K ., and 2K, ¢ are neither minimally durable nor minimally per-
manent with respect to chromatic number #.

The method of proof employed in Theorem 3 now shows that the property
« being minimally durable (or minimally permanent) with respect to the squeeze
property P» is itself a squeeze property.

5. - Durably critical and permanently minimal graphs.

Let P, be a sequence of distinet properties indexed by the nonnegative
integers. A graph @ is said to be durably critical with respect to P, if: (i) @ has
property P,; (ii) G —o has property P, , where m(v) 5= n, for each point v
of G; and (iii) for each two distinet points u and v of &, G — » — u has property
P,y Where m(u, v) 7= m(v). Similarly, G is said to be permanently minimal
with respect to P, if: (i) @ has property P,; (i) @ — ¢ has property P, ,
where m(e) # n, for each line ¢ of G; and (iii) for each two distinct lines e
and f of G, G—e¢—f has property P, ,, where m(e, f) 5= m(z).

The complete graph K., n>2, is durably critical with respect to chromatic
number #, but not permanently minimal. The n-star K(1,n) is permanently
minimal with respect to line-chromatic number #.

Theorem 4. The graph @ is durably critical with respect to chromatic
number n, n>2, if and only if G = K,.

Proof. Clearly, K, is durably critical with respect to chromatic number n.
Conversely, let G be a durably critical graph with respect to chromatic num-
ber n, and let % and v be any two points of . Then G —v—u)=n—2.
Color G —v—u with a proper n—2 coloring. Now reintroduce the point u
together with the lines incident with # in G—». Since X(G—v)= n—1,
a new color is required for #. Then no other point in & — v has the same
color as u. Next reintroduce the point v together with the lines incident with v
in G. Since Z(@)=mn, v is adjacent to at least one point of each color in
G—v. Hence » and v are adjacent in @, and @ is a complete graph. Since
@)y=mn, G=K,.

To correspond with the above theorem, we have the following: the graph @
is permanently minimal with respect to line-chromatic number ", n>2, nsL 3,
if and only if ¢ = K(1,%). This will follow directly from the next theorem,
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noting that K(1,n) is the unique graph with the line graph K,, for « = 3.
(Both K, and K, , have line graph K,). The line-chromatic number of the graph G
is denoted by %,(G), and the line graph of @ is denoted by L(G).

Theorem 5. The graph @ is permanently minimal with respect to X, (G)=n
if and only if L(Q) is durably critical with respect to Z(L(G)) =n, n>2.

Proof. (i) Let @ be permanently minimal with respect to X,(@) = n;
then 7,(¢) = %(L(@)) = n. Let v be a point of L(G), with corresponding edge ¢
I @; then X(IL(G —e)) = X%,(G —¢) = n — 1, so that L(G) is critical with respect
to X(L(G))=n. Now let « bea point of L(G) — v, with corresponding edge f
in G—e. We see that Z(L(G) —v—u)= LG —e—f))= 1 (G—e—f)=n—2,
so that L(G) is durably critical with respect to Z1(L(G)) = n.

(i) The converse is established similarly.

We observe that the properties: « being durably critical with respect to
the squeeze property P,» and «being permanently minimal with respect to
the squeeze property P,» are themselves squeeze properties. The proofs are
routine and are omitted.

6. - Durable and critical graphs with respect to the Betti number and genus.
The Betti number of a graph @ is given by the equation
B =B—V+n,

where @ has » components, B lines, and V points. The observations of the
following theorem are immediate upon noting that the BErTI number counts
the number of independent cyecles in G. This theorem typifies the contrast
between the concepts of durability and ecriticality, and between permanence
and minimality.

Theorem 6. With respect to the property « having Betti number n »:
(i) G is durable if and only if no point of G is in a cycle.

(il) G is permanent if and only if no line of G is in a cycle.

(iii) G ds critical if and only if every point of G is in a cycle.

iv) G is minimal if and only if every line of G is im a cycle.

It is evident that the conditions of statements (i) and (ii) above are both
equivalent to the condition that ¢ be a forest. If @ has no isolated points,
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then the condition of statement (iv) implies that of statement (iii). (See
Theorem 1.) The graph 2K, ¢, n> 3, illustrates that condition (iii) does not
imply the condition of (iv).

Barrie, HARARY, KopaMa, and Younas [1] proved that if G has n blocks
By, ..., B,, then the genus, y(G), of @ is:

(@)= 2 y(B)).

Let G be a connected graph with » blocks, each isomorphic to G. Then:
(i) (K;); is both critical and minimal with respect to having genus n.

(i) (K,)y is permanent (but not minimally permanent) and critically durable
with respect to having genus n.

It follows from the equation

V(If(py q, 7)) =

s

{(p —2) (g +r—2)|

4
for p>q>r and ¢+ r<6 (see [11]), that K(n-2,3,3) is durably critical
with respeect to having genus #, for n>5, » 20 (mod 4). It is evident that
examples may be given of graphs which are minimally permanent with respect
to having genus n. We close with the following question: do there exist per-
manently minimal graphs with respect to having genus #? (It is easy to show
that any such graph must contain no triangles.)
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Summary.

A property P that a graph may have is said to be a squeeze property if, when-
ever two graphs H and G have property P and H’ is a subgraph of G and a supergraph
of H, then IH' must have property P also. Several resulls are established for squeeze
properties in general, and some specialized resulls are given for particular squeeze properties,
such as the chromatic number.






