J. C. BEIDLEMAN and A. E. SPENCER (*)

Finite Group with a Solvable Maximal Subgroup. (**)

1. - Introduction.

Let G be a finite group all of whose proper subgroups are nilpotent. Then by the famous Schmidt-Iwasawa theorem it follows that the group G is solvable. But what can be said about a finite group G if only one maximal subgroup M of G is nilpotent? The following results are known:

- (I) (J. G. Thompson [12]). If M has odd order, then G is solvable.
- (II) (W. E. DESKINS [3]). If M has class ≤ 2 , then G is solvable.
- (III) (Z. Janko [10]). If a 2-Sylow subgroup of M is of class ≤ 2 , then G is solvable.

The above results lead to following question: What can be said about the finite group G which contains a solvable maximal subgroup M which is p-closed and p-nilpotent, p a prime divisor of the order of M? In the present paper we prove:

Theorem 1. Let G be a finite group with a solvable maximal subgroup M which is p-closed and p-nilpotent, p and odd prime which divides the order of $M/\operatorname{cor}(M)$. If each maximal subgroup L with $\operatorname{cor}(L) = \operatorname{cor}(M)$ is p-closed, then G is solvable.

Theorem 2. Let G be a finite group which contains a solvable maximal subgroup M which is 2-closed and 2-nilpotent. If M/cor(M) has even order and a 2-Sylow subgroup M_2 of M is of class ≤ 2 , then G is solvable.

^(*) Indirizzo degli Autori: Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506, U.S.A. .

^(**) The author Dr. J. C. Beidleman was supported by National Science Foundation Grant G. P. 8627. — Ricevuto: 14-IV-1969.

The following analogue of the SCHMIDT-IWASAWA theorem is due to Itô [9], and is also proved by HUPPERT in [7].

(IV) If a finite group G has all its proper subgroups p-nilpotent, then either G has a normal p-Sylow subgroup or G is p-nilpotent. In particular, G is p-solvable and $e_p(G) = 1$ if p divides the order of G.

The following two results of J. S. Rose [11] are somewhat more general than (IV).

- (V) If every proper abnormal subgroup of the finite group G is p-nilpotent, and if in addition either (i) the p-Sylow subgroups of G are Abelian or (ii) p is an odd prime, then G is p-solvable. Furthermore, there exists in G a normal p-subgroup P_0 (possibly trivial) such that G/P_0 is p-nilpotent. If (i) is satisfied, then either G has a normal p-Sylow subgroup or is itself p-nilpotent. In any case $e_p(G) \leqslant 2$.
- (VI) If every proper self-normalizing subgroup of a finite group G is p-nilpotent, then G is p-solvable and $e_p(G) \leqslant 2$.

The results of Itô, Huppert and Rose mentioned above lead to the following question: What can be said about the finite group G which contains only one maximal subgroup M which is p-nilpotent, p a prime factor of the order of M? The following two theorems are established in the present paper.

Theorem 3. Let the finite group G contain a maximal subgroup M which is p-closed and p-nilpotent, p a prime factor of the order of M/cor(M). Then G is p-solvable and $e_p(G) \leq 2$ if G satisfies either of the following conditions:

- (a) For p=2, a 2-Sylow subgroup M_2 of M is of class $\leqslant 2$.
- (b) For p odd, each maximal subgroup L of G with cor(L) = cor(M) is p-closed.

Theorem 4. Let the finite group G contain a maximal subgroup M which is p-closed and p-nilpotent, p a prime divisor of the order of M. Let M be a Hall subgroup of G. Then G is p-solvable and $e_x(G) \leq 2$ if G satisfies one of the following conditions:

- (a) For p=2, a 2-Sylow subgroup M_2 of M is of class ≤ 2 .
- (b) For p odd, each maximal subgroup L with cor(L) = cor(M) is p-closed.

2. - Preliminaries.

The only groups considered here are finite.

If H is a subgroup of the group G, then:

H' is the derived subgroup of H, o(H) is the order of H, [G:H] is the index of H in G, $H^x = x^{-1}Hx$ for each $x \in G$, $\{H, H^x\}$ is the subgroup of G generated by H and H^x , $N_G(H)$ is the normalizer of H in G, $\operatorname{cor}(H) = \bigcap_{x \in G} H^x$ is the core of H in G, $\varphi(H)$ is the Frattini subgroup of H, z(H) is the center of H.

If x is an element of the group G, then o(x) denotes the order of x.

The subgroup H of the group G is called *self-normalizing* if $N_g(H) = H$. Further, H is called *abnormal* if, for each $g \in G$, we have $g \in \{H, H^g\}$. The reader should consult [11] for some of the interesting properties of abnormal subgroups. We note that a maximal subgroup of a group G is either normal or abnormal. Thus the abnormal maximal subgroups of G are precisely its non-normal maximal subgroups (see [11]).

Let p be a prime number. Throughout the present paper $\varphi_p(G)$ denotes the intersection of all maximal subgroups of G whose indices are not divisible by p. W. E. Deskins [3] showed that $\varphi_p(G)$ is a normal solvable subgroup of G. This fact is useful in proving the results of this paper.

Let π be a nonempty set of prime numbers. Then P_{π} will denote the set of prime numbers not in π . A positive integer n is called a π -number if the only prime factors of n are contained in π . An element x in the group G is called a π -element if o(x) is a π -number. The group G is called a π -group if o(G) is a π -number. The group G is π -closed if the products of π -elements of G are π -elements (see [1], [2]). The group G is π -closed if and only if G contains a normal Hall π -subgroup. Subgroups and homomorphic images of π -closed groups are π -closed.

Let p be a prime number. The group G is p-closed if G possesses a normal p-Sylow subgroup. The group G is said to be p-nilpotent if G is P_x -closed. Let P be a p-Sylow subgroup of G. Then G is called p-normal if Z(P) is the center of every p-Sylow subgroup of G in which it is contained.

The following result is used in the proofs of several of our theorems.

Theorem of Grün-Wielandt-P. Hall [5]. Let G be a p-normal group and Z(P) the center of a p-Sylow subgroup P of G. Then G is p-nilpotent if and only if $N_G(Z(P))$ is p-nilpotent.

The group G is called p-solvable if each of its composition factors are either a p-group or a P_x -group (see [6]). Thus the group G is p-solvable if and only

if G has a series of normal subgroups

$$(1) 1 = G_0 < G_1 < \dots < G_n = G$$

for which each factor G_{i+1}/G_i is either a *p*-group or a P_p -group. The *p*-length of a *p*-solvable group G, denoted by $e_p(G)$, is the smallest number of *p*-factors occurring in any series such as (1) (see [6], [11]).

3. - Basic Lemmas.

In the present section we present three lemmas which will be used in establishing the four theorems mentioned previously. We begin with

Lemma 1. Let the group G contain a maximal subgroup M which is p-closed and p-nilpotent, p an odd prime factor of o(M). If cor(M) = 1, then G is p-nilpotent.

Proof. Let P be a p-Sylow subgroup of M. Since $\operatorname{cor}(M)=1$ and M is p-closed, it follows that $N_g(P)=M$. Assume by way of contradiction that P is not a p-Sylow subgroup of G, and let Q be a p-Sylow subgroup of G containing P. Then $N_g(P)$ properly contains P and this contradicts the fact that $N_g(P)=M$. Hence, P is a p-Sylow subgroup of G and $N_g(P)=M$.

For each $x \in G$ let f_x denote the inner automorphism of G induced by x. Let $A = \{f_x \mid x \in N_c(P)\}$ and note that A is a subgroup of the group of automorphisms of G. Let P_1 be a non-trivial A-invariant subgroup of P. Then P_1 is a normal p-subgroup of $N_g(P) = M$. Since $\operatorname{cor}(M) = 1$, it follows that $N_g(P_1) = M$ so that $N_g(P_1)$ is p-nilpotent. Therefore, the elements of $N_g(P_1)$ whose order is prime to p centralize P_1 . Because of Theorem A of Thompson [12] it follows that G is p-nilpotent.

Lemma 2. Let the group G contain a solvable maximal subgroup M of core 1 which is p-closed and p-nilpotent, p an odd prime factor of o(M). If each maximal subgroup of core 1 is p-closed, then G is solvable.

Proof. Because of Lemma 1 G is p-nilpotent so that we can assume that G is not simple. Let H be a minimal normal subgroup of G. Since G = HM, G/H is solvable and we can assume that H is the unique minimal normal subgroup of G.

Let K denote the normal p-complement of G. Then K contains H so that H is a P_p -group. Let L denote a maximal subgroup of G which does not contain H. Then [G:L] is a P_p -number so that L contains a p-Sylow subgroup P of

G. Since L is p-closed it follows that $N_a(P) = L$. As in the proof of Lemma 1, M contains a p-Sylow subgroup of G so there exists an element x of G such that $M = N_a(P^x)$. From this it follows that $L^x = M$ so that each maximal subgroup of G which does not contain H is conjugate to M.

Let q be a prime divisor of [G:M] and let R be a maximal subgroup of G such that [G:R] is not divisible by q. Then R is not conjugate to M so that R contains H. Hence, H is contained in $\varphi_q(G)$. By Theorem 2 of [3], H is solvable. Since H and G/H are solvable we conclude that G is solvable.

This completes the proof.

Lemma 3. Let G be a group with a maximal subgroup of even order which is 2-closed and 2-nilpotent. If cor(M) = 1 and 2-Sylow subgroup M_2 of M is of class ≤ 2 , then G is 2-nilpotent, hence G is solvable.

Proof. As in the proof of Lemma 1, M_2 is a 2-Sylow subgroup of G and $N_G(M_2) = M$. We distinguish two cases.

Case 1. G is 2-normal. Since cor(M)=1, it follows that $N_{G}(Z(M_{2}))=M$ which is 2-nilpotent. Because of the Grün-Wielandt-P. Hall Thoerem, G is 2-nilpotent.

Case 2. G is not 2-normal. Then there exists an element x of G such that $Z(M_2)$ is nonnormal subgroup of M_2^x and $M_2^x \neq M_2$. Let $D = M_2^x \cap M_2$ and since M_2 is of class ≤ 2 it follows that $M_2' \subseteq Z(M_2)$. Thus D is a normal subgroup of M_2 and since M is 2-nilpotent it follows that D is a normal subgroup of M. Since M is a maximal subgroup of G and $\operatorname{cor}(M) = 1$, $N_G(D) = M$. We note that D is properly contained in M_2^x , hence $N_G(D) \cap M_2^x$ properly contains D. Therefore, there exists an element $y \in N_G(D) \cap M_2^x$ such that $y \notin D$. Since $M_2^x \neq M_2$ and M_2 is normal in M, it follows that $y \notin M$. But $N_G(D) = M$ and so we have a contradiction. Hence, G must be 2-normal.

Let K be a normal 2-complement of G. Then K is of odd order so that by the FEIT- THOMPSON theorem (see [4]) K is solvable. Since G/K is a 2-group, it follows that G is solvable.

4. - Proof Theorem 1.

Because of Lemma 2 we can assume that $cor(M) \neq 1$. Then M/cor(M) is a maximal subgroup of G/cor(M) which satisfies the hypotheses of Lemma 2. Hence by induction on o(G), it follows that G/cor(M) is solvable. Since cor(M) is solvable, G is solvable.

5. - Proof of Theorem 2.

By Lemma 3 we can assume that $cor(M) \neq 1$. Then M/cor(M) is a maximal subgroup of G/cor(M) that satisfies all the hypotheses of Lemma 3, hence G/cor(M) is solvable. Since cor(M) is solvable, G is solvable.

6. - Proof of Theorem 3.

Because of Lemma 1 and Lemma 3 we can assume that $\operatorname{cor}(M) \neq 1$. We note that $M/\operatorname{cor}(M)$ is a maximal subgroup of $G/\operatorname{cor}(M)$ whose core is 1 and it satisfies the hypotheses of the Theorem. From Lemma 1 and Lemma 3 it follows that $G/\operatorname{cor}(M)$ is p-nilpotent. Being a subgroup of M, $\operatorname{cor}(M)$ is p-closed and p-nilpotent. Hence, it follows that G is p-solvable and $e_p(G) \leq 2$.

7. - Proof of Theorem 4.

From Lemma 1 and Lemma 3 we can assume that $\operatorname{cor}(M) \neq 1$. If p divides the order of $M/\operatorname{cor}(M)$, then the Theorem is a consequence of Theorem 3. Assume that p is not a factor of $o(M/\operatorname{cor}(M))$. Then $\operatorname{cor}(M)$ contains a normal p-Sylow subgroup of G. Hence, we conclude that G is p-solvable and $e_p(G) \leq 2$. This completes the proof.

8. - Examples.

Example 1. Let G denote the projective linear group PSL (2, 17). Then G is a simple group with a 2-Sylow subgroup K of class 3. Moreover, K is a maximal subgroup of G (see [8], p. 447). We note that K is a solvable maximal subgroup of G which is 2-closed and 2-nilpotent. Hence, we can not remove the hypothesis in Theorems 2, part (a) in Theorem 3, and part (a) in Theorem 4 of the present paper that a 2-Sylow subgroup M_2 of M is of class ≤ 2 .

Example 2. Let H=GL(3,2), the general linear group of 3×3 matrices over the field of two elements. Then H is a simple group of order 168. We recall that H contains a solvable maximal subgroup K which is isomorphic to S_4 , the

symmetric group on four symbols (see [11], p. 352), is not 2-closed and not 2-nilpotent, but a 2-Sylow subgroup of K is of class 2. We also note that K is a Hall subgroup of H. Hence, we can not remove the hypothesis in Theorem 2, Theorem 3 and Theorem 4 that M is 2-closed and 2-nilpotent.

Let P be a 7-SYLOW subgroup of H. Then $N_H(P) = L$ is a maximal subgroup of H which is nonnilpotent of order 21. Hence, L is 7-closed but not 7-nilpotent. L is a Hall subgroup of H and each proper subgroup of H is 7-closed (see [11], p. 352). Hence, we can not remove the hypothesis in Theorems 1, 3 and 4 that M is p-nilpotent, p an odd prime factor of o(M/cor(M)).

The mapping $f\colon x\to (x^{-1})^T$ of H onto itself (where, for any $y\in H,\ y^{-1}$ is the inverse of y in H and y^T is the transpose of y in H) is an automorphism of H of order 2. Form the subgroup $G=H\{f\}$ of the holomorph of H, that is, G is a split extension of H by f. Then H is the only normal maximal subgroup of G and each other maximal subgroup of G is supersolvable (see [11], p. 352). Let G be a 7-Sylow subgroup of G. Then G is not 2-closed, but G is 2-nilpotent. A 2-Sylow subgroup of G is Abelian, hence of class G is not 2-solvable, but all of the proper abnormal subgroups of G are 2-nilpotent. Therefore, we can not remove the hypothesis in Theorem 2, Theorem 3 and Theorem 4 that G is 2-closed.

Example 3. Let G denote the symmetric group on four symbols and let P be a 2-Sylow subgroup of G. Then $M=N_G(P)=P$ is a maximal subgroup of G which is 2-closed and 2-nilpotent. We also note that P is of class 2. By Corollary 3 of ([1], p. 138), G satisfies the conditions part (a) of Theorem 3. We also note that $e_2(G)=2$.

References.

- [1] R. Baer, Classes of finite groups and their properties, Illinois J. Math. 1 (1957), 115-187.
- [2] R. Baer, Closure and dispersion of finite groups, Illinois J. Math. 2 (1958), 619-640.
- [3] W. E. Deskins, A condition for the solvability of a finite group, Illinois J. Math. 5 (1961), 306-313.
- [4] W. Feit and J. G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 755-1029.
- [5] M. Hall, Theory of Groups, MacMilland Co., New York 1959.

- [6] P. Hall and G. Higman, On the p-length of p-solvable groups and reduction theorems problems for the Burnside's problem, Proc. London Math. Soc. 6 (1956), 1-42.
- [7] B. HUPPERT, Subnormale Untergruppen und p-Sylow gruppen, Acta Sci. Math. Szeged 22 (1961), 46-61.
- [8] B. Huppert, Endliche Gruppen (I), Springer-Verlag, New York 1967.
- [9] N. Itô, Note on (LM)-groups of finite orders, Kôdai Math. Sem. Rep. 3 (1951), 1-6.
- [10] Z. Janko, Finite groups with a nilpotent maximal subgroup, J. Austral. Math. Soc. 4 (1964), 449-451.
- [11] J. S. Rose, The influence on a finite group of its proper abnormal structure, J. London Math. Soc. 40 (1965), 348-361.
- [12] J. G. Thompson, Normal p-complements of finite groups, Math. Z. 72 (1960), 332-354.

Summary.

In the present paper we determine several sufficient conditions for a finite group G to be solvable. Let G contain a solvable maximal subgroup M which is p-closed and p-nilpotent, p an odd prime which divides the order of M/cor(M). If each maximal subgroup L with cor(L) = cor(M) is p-closed, then G is solvable. Also, let G contain a solvable maximal subgroup M which is 2-closed and 2-nilpotent. If M/cor(M) has even order and a 2-Sy low subgroup M_2 of M is of class ≤ 2 , then G is solvable.

Riassunto.

Si determinano condizioni sufficienti perchè un gruppo finito sia risolubile. Il gruppo G contenga un sottogruppo M massimale risolubile che sia p-chiuso e p-nilpotente, essendo p un numero primo dispari che divide l'ordine del quoziente rispetto al suo cuore. Allora se ogni sottogruppo massimale L il cui cuore coincide col cuore di M è p-chiuso, allora G è risolubile.

Il gruppo G contenga un sottogruppo massimole risolubile M che sia 2-chiuso e 2-nilpotente. Se il quoziente di M rispetto al suo cuore ha ordine pari ed un 2-sottogruppo di Sy lo w M_2 di M ha classe al più due, il gruppo G è risolubile.

* * *