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Finite Group with a Solvable Maximal Subgroup. (*%

1. - Introduection .

Let @ be a finite group all of whose proper subgroups are nilpotent. Then
by the famous ScEMIDT-IWASAWA theorem it follows that the group G is sol-
vable. But what can be said about a finite group G if only one maximal
subgroup M of G is nilpotent? The following results are known:

(1) (J. G. Trompson [12]). If M has odd order, then & is solvable.
(II) (W. E. Desxins [8]). If M has class < 2, then G is solvable.

(III) (4. Janko [10]). If a 2-SyrLow subgroup of M is of class < 2, then
G is solvable.

The above results lead to following question: What can be said about the
finite group G which contains a solvable maximal subgroup M which is p-closed
and p-nilpotent, p a prime divisor of the order of /% In the present paper
we prove:

Theorem 1. Let G be a finite group with a solvable maximal subgroup M
which s p-closed and p-nilpotent, p and odd prime which divides the order of
M/cor{M). If each mazximal subgroup L with cor(L) = cor(M) is p-closed,
then G is solvable.

Theorem 2. Let G be a finite group which contains a solvable maximal
subgroup M which is 2-closed and 2-nilpotent. If M[cor(M) has even order and
a2-Sylow subgroup M, of M is of class < 2, then G is solvable.
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The following analogue of the ScEMIDT-IWASAWA theorem is due to Tr0
[9], and is also proved by Hupperr in [7].

(IV) If a finite group G has all its proper subgroups p-nilpotent, then
either & has a normal p-SyLow subgroup or ¢ is p-nilpotent. In particular,
@ is p-solvable and ¢,(@) = 1 if p divides the order of G.

The following two results of J. S. Rose [11] are somewhat more general
than (IV).

(V) If every proper abnormal subgroup of the finite group G is p-nil-
potent, and if in addition either (i) the p-SyLow subgroups of @ are Abelian or
(if) p is an odd prime, then @ is g-solvable. Furthermore, there exists in @ a
normal p-subgroup P, (possibly trivial) such that G/P, is p-nilpotent. If (i)
is satisfied, then either @ has a normal p-SyLow subgroup or is itself p-nil-
potent. In any case ¢,(@) < 2.

(VI) 1f every proper self-normalizing subgroup of a finite group G is
p-nilpotent, then @ is p-solvable and e,(@) < 2.

The results of I10, HurprRT and RoSE mentioned above lead to the fol-
lowing question: What can be said about the finite group ¢ which contains
only one maximal subgroup M which is p-nilpotent, p a prime factor of the
order of J/? The following two theorems are established in the present paper.

Theorem 3. Let the finite group G contain a mamimal subgroup M which
18 p-closed and p-nilpctent, p a prime factor of the order of M/cor(M). Then @
18 p-solvable and e,(G) < 2 if G satisfies either of the following conditions :

(@) For p =2, a 2-Sylow subgroup MM, of M is of class <2.
(b) For p odd, each mazimal subgroup L of G with cor(L) = cor(M) is
p-closed.

Theorem 4. Let the finite group G contain a mazimal subgroup M which
is p-closed and p-wilpotent, p a prime divisor of the order of M. Let M be a
H all subgroup of G. Then @ is p-solvable and €,(@) <2 if G satisfies one of the
fcllowing  conditions:

@) For p =2, a 2-Sylow subgroup M, of M is of class < 2.
(b) For p odd, each marimal subgroup L with cov(L) = cor(l}) is p-
closed.

2. - Preliminaries.

The only groups considered here are finite.
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If A is a subgroup of the group @, then:

H' is the derived subgroup of H,

o(H) is the order of H,

[G:H] is the index of H in G,

H? = g~'Hz for each e G,

{H, H¢} is the subgroup of G generated by H and He,
N (H) is the normalizer of H in @,

cor(H) = n H= is the core of H in G,

zEQ

@(H) is the FRATTINI subgroup of A,
2(H) is the center of H.

If # is an element of the group @, then o(z) denotes the order of #.

The subgroup H of the group G is called self-normalizing if N (H) = H.
Further, H is called abnormal if, for each ge@, we have ge{ H, Hy}. The reader
should consult [11] for some of the interesting properties of abnormal sub-
groups. We note that a maximal subgroup of a group G is either normal or
abnormal. Thus the abnormal maximal subgroups of G are precisely its non-
normal maximal subgroups (see [11]).

Let p be a prime number. Throughout the present paper @,(G) denotes
the intersection of all maximal subgroups of ¢ whose indices are not divisible
by p. W. E. Deskixs [3] showed that ¢,(G) is a normal solvable subgroup
of G. This fact is useful in proving the results of this paper.

Let oz be a nonempty set of prime numbers. Then P_ will denote the set of
prime numbers not in sz. A positive integer » is called a m-number if the only prime
factors of » are contained in 7. An element # in the group G is called a n-elem-
ent if o(z) is & w-number. The group @ is called a n-group if o(G) is a z-number.
The group G is n-closed if the products of z-elements of @ are m-elements (see
[1], [2]). The group @ is z-closed if and only if G contains a normal HALL 7-sub-
group. Subgroups and homomorphic images of z-closed groups are m-closed.

Let p be a prime number. The group @ is p-closed if G possesses a normal
p-SYLOW subgroup. The group @ is said to be p-nilpotent if ¢ is P,-closed.
Let P be a p-Syrow subgroup of G. Then @ is called p-normal if Z(P) is the
center of every p-SYLow subgroup of @ in which it is contained.

The following result is used in the proofs of several of our theorems.

Theorem of GRUN-WIBLANDT - P. HALL [5]. Let @ be a p-normal group
and Z(P) the center of a p-SyLow subgroup P of G. Then G is p-nilpotent if
and only if N_(Z(P)) is p-nilpotent.

The group @G is called p-solvable if each of its composition factors are either
a p-group or a P,-group (see [6]). Thus the group @ is p-solvable if and only
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if G has a series of normal subgroups
1) =G << .. <G, =6

for which each factor G,.,/@; is either a p-group or a P,-group. The p-length
of a p-solvable group @, denoted by e,(&), is the smallest number of p-factors
occurring in any series such as (1) (see [8], [11]).

3. - Basic Lemmas.

In the present section we present three lemmas which will be used in estab-
lishing the four theorems mentioned previously. We begin with

Lemma 1. Let the group G contain a maximal subgroup M which is p-
closed and p-nilpotent, p an odd prime factor of o(M). If cor(M) =1, then G is
p-nilpotent.

Proof. Let P be a p-Syrow subgroup of M. Since cor(M) = 1 and J is
p-closed, it follows that N,(P) == J. Assume by way of contradiction that P
is not a p-SyrLow subgroup of @, and let @ be a p-SyrLow subgroup of @ con-
taining P. Then N, (P) properly contains P and this contradicts the fact that
Ny (P) = M. Hence, P is a p-SyLow subgroup of G and ¥, (P) = M.

For each w e @ let f, denote the inner automorphism of G induced by .
Let 4 ={f,|ze N,(P)} and note that 4 is a subgroup of the group of autom-
orphisms of G. Let P, be a non-trivial 4-invariant subgroup of P. Then P,
is a normal p-subgroup of N (P) = M. Since cor(M) = 1, it follows that
N,(P,) = M so that N,(P,) is p-nilpotent. Therefore, the elements of N (P,)
whose order is prime to p ceutralize P;. Because of Theorem A of THOMPSON
[12] it follows that @ is p-nilpotent.

Lemma 2. Let the group G contain a solvable maximal subgroup M of
core 1 which is p-closed and p-wilpotent, p an odd prime factor of o(M). If each
maximal subgroup of core 1 is p-closed, then G is solvable.

Proof. Because of Lemma 1 @ is p-nilpotent so that we can assume that
G is not simple. Let H be a minima}l normal subgroup of ¢. Since ¢ = H I,
G/H is solvable and we can assume that H is the unique minimal normal subgrou p
of G.

Let K denote the normal p-complement of G. Then K contains H so that
H is a P,-group. Let L denote a maximal subgroup of G which does not contain H.

Then [G:L] is a P,-number so that L contains a p-SyLow subgroup P of
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@. Since L is p-closed it follows that N (P) = L. As in the proof of Lemma 1,
M contains a p-SyrLow subgroup of G so there exists an element » of ¢ such
that M = N,(P*). From thisit follows that L® = A so that each maximal sub-
group of & which does not contain H is conjugate to Al

Let ¢ be a prime divisor of [G:HM] and let B be a maximal subgroup of ¢
such that [G:R] is not divisible by ¢. Then R is not conjugate to M so that B
contains H. Hence, A is contained in ¢ (G). By Theorem 2 of [3], H is solvable.
Since H and G/H are solvable we conclude that G is solvable.

This completes the proof.

Lemma 3. Let @ be a group with a maximal subgroup of even ovder which
is 2-closed and 2-nilpotent. If cor(M) = 1 and 2-Sylow subgroup M, of M is
of class < 2, then G is 2-nilpotent, hence G is solvable.

Proof. Asin the proof of Lemma 1, M, is a 2-Syr.ow subgroup of & and
N (A,) = M. We distinguish two cases.

Case 1. Gis2-normal. Since cor(M) = 1, it follows that N (Z(1L,)) = M
which is 2-nilpotent. Because of the GRUN-WIBLANDT-P. HALL Thoerem, G
is 2-nilpotent.

Case 2. ¢ is not 2-normal. Then there exists an element x of G such
that Z(J,) is nonnormal subgroup of M; and 3; % M,. Let D= M;n M,
and since M, is of class <2 it follows that M; C Z(M,) . Thus D is a normal
subgroup of M, and since I is 2-nilpotent it follows that D is a normal subgroup
of M. Sinee M is a maximal subgroup of ¢ and cor(M) =1, N (D) = M.
We note that D is properly contained in M7, hence N (D) n M properly cont-
ains D. Therefore, there exists an element y e N (D) n M such that y ¢ D.
Since M7 == A, and M, is normal in M, it follows that ¥ ¢ M. But ¥ (D) = M
and so we have a contradiction. Hence, ¢ must be 2-normal.

Let K be a normal 2-complement of G. Then K is of odd order so that by
the Ferr- THoMPSON theorem (see [4]) K is solvable. Since G/K is a 2-group, it
follows that G is solvable.

4. - Proof Theorem 1.

Because of Lemma 2 we can assume that cor(d) % 1. Then M /cor(M) is
a maximal subgroup of G/cor! M) which satisfies the hypotheses of Lemma 2.
Hence by induction on o(G), it follows that G/cor{M) is solvable. Since cor{H)
is solvable, G is solvable.



76 J. C. BEIDLEMAN and A. E. SPENCER [6]

3. - Proof of Theorem 2.

By Lemma 3 we can assume that cor(d) s¢ 1. Then M Jeor( M) is a maximal
subgroup of G/cor(M) that satisfies all the hypotheses of Lemma 3, hence
G/eor(M) is solvable. Since cor(M) is solvable, G is solvable.

6. - Proof of Theorem 3.

Because of Lemma 1 and Lemma 3 we can assume that cor( M) = 1. We
note that i/cor(M) is a maximal subgroup of G/cor(}M) whose core is 1 and
it satisfies the hypotheses of the Theorem. From Lemma 1 and Lemma 3 it follows
that G/cor(Af) is p-nilpotent. Being a subgroup of M, cor(d) is p-closed and
p-nilpotent. Hence, it follows that G is p-solvable and e,(G) < 2.

7. - Proof of Theorem 4.

From Lemma 1 and Lemma 3 we can assume that cor(M) s« 1. If p div-
ides the order of M/cor(M), then the Theorem is a consequence of Theorem 3.
Agsume that p is not a factor of o(M Jeor( M )). Then cor(M) contains a normal
p-SYLow subgroup of G. Hence, we conclude that & is p-solvable and e,(G) < 2.

This completes the proof.

8. - Examples.

Example 1. Let G denote the projective linear group PSL (2, 17).
Then @ is & simple group with a 2-SyLow subgroup K of class 3. Moreover, K
is & maximal subgroup of @ (see [8], . 447). We note that K is a solvable maximal
subgroup of ¢ which is 2-closed and 2-nilpotent. Hence, we can not remove the
hypothesis in Theorems 2, part (a) in Theorem 3, and part (a) in Theorem 4 of
the present paper that a 2-Syrow subgroup M, of I is of class < 2.

Example 2. Let H = GL (3, 2), the general linear group of 3 X3 matrices
over the field of two elements. Then H is a simple group of order 168. We recall
that H contains a solvable maximal subgroup K which is isomorphic to S, , the
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symmetric group on four symbols (see [11], p. 352), is not 2-closed and not
2-nilpotent, but a 2-SyLow subgroup of K is of class 2. We also note that K
is a HALL subgroup of H. Hence, we can not remove the hypothesis in Theorem 2,
Theorem 3 and Theorem 4 that I is 2-closed and 2-nilpotent.

Let P be a 7-SyLow subgroup of H. Then N,(P) = L is a maximal subgroup
of H which is nonnilpotent of order 21. Hence, L is 7-closed but not 7-nilpotent.
L is a HALL subgroup of H and each proper subgroup of H is 7-closed (see [11],
p. 352). Hence, we can not remove the hypothesis in Theorems 1, 3 and 4 that
JM is p-nilpotent, p an odd prime factor of o M/cor()).

The mapping f:  — ()" of H onto itself (where, for any y € H, y-! is
the inverse of y in H and y” is the transpose of ¥ in H) is an automorphism
of H of order 2. Form the subgroup G = H{ f} of the holomorph of H, that is,
G is a split extension of H by f. Then H is the only normal maximal subgroup of
G and each other maximal subgroup of & is supersolvable (see [11], p. 352).
Let P be a 7-SyLow subgroup of @. Then N = N (P) is a self-normalizing
maximal subgroup and o(N) = 42. We note that ¥ is not 2-closed, but N is 2-
nilpotent. A 2-Syrow subgroup of N is Abelian, hence of class < 2. We also
note that G is not 2-solvable, but all of the proper abnormal subgroups of &
are 2-nilpotent. Therefore, we can not remove the hypothesis in Theorem 2,
Theorem 3 and Theorem 4 that 31 is 2-closed.

Example 3. ILet G denote the symmetric group on four symbols and
let P be a 2-SyYLow subgroup of @. Then M = N_(P)= P is a maximal subgroup
of G which is 2-closed and 2-nilpotent. We also note that P is of class 2. By
Corollary 3 of ([1], p. 138), @ satisfies the conditions part (a) of Theorem 3.
We also note that e,(G) = 2.
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Summary.

In the present paper we determine several sufficient conditions for a finile group G
to be solvatle. Let G contain a solvable mazimal subgrowp M which is p-closed and p-nilp-
otent, p an odd prime which divides the order of Mjcor(M). If each mazimal subgroup I,
with cor(L) = cor(A) is p-closed, then G is solvable. Also, lel G conlain a solvable maximal
subgroup M which is 2-closed and 2-nilpoteni. If Mjcor(d) has even order and a 2-
Sylow subgroup Myof M is of class < 2, then G is solvable.

Riassunto.

8¢ determinano condizioni sufficienti perché un gruppo finito sia visolubile. Il yruppo G
contenga un sotlogruppo I massimale risolubile che sia p-chiuso e p-nilpotente, essendo p
un numero primo dispari che divide Uovdine del quoziente rispetio al suo cuore. Allora se
ogni sottogruppo massimale L il cui cuore coineide col cuote di M ¢ p-chiuso, allora G é
risolubile.

IT gruppo G contenga un sollogruppo massimole risolubile M <he sia 2-chiuso e 2-nil-
potente. Se il quoziente di M rispello al suo cuore ha ordine pari ed un 2-sotlogruppo di
Sylow M, di M ha classe al pite due, il gruppe G ¢ risolubile.



