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On the Maximum Term and the Proximate Order

of an Entire Function. (*%)

1. — Let f(z) = Z a,z" be an entire function of order p (0 << p<Coo0). A
n=0
real-valued, continuous and piecewise differentiable function g(») is called a

proximate order ([1], p. 32) if it satisfies the conditions

(1.1) lim g(») =0,
(1.2) lim (r ¢'() log 7) =0,

where p'(7) is either the right or left-hand derivative at points where they are
different.
If, for the entire function f(z), the quantity

(1.3) T = lim sup (+~2" log M(r)), where M(r) = max | f(2) |,

) lzl=r

is different from zero and infinity, then g(r) is called a proximate order of the
given entire function f(z), and 7' is called the type of the function f(z) with
respect to the proximate order o(r). If the limit exists in (1.3), then we say
that f(z) is of perfectly regular growth with respect to the proximate order
o(r).

Let u(r) be the maximum term of rank »(r) in the entire series for f(2) for
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|#] == so that we have
p(r) =max{ | a, |}, w(r) = max{n| w@r) =|a,|r}.
n=0

It is known ([2], p. 31) that

(1.4) log p(r) =1og p(ro) + [~ w(a) dw, 0 <rg<<7.

In the present paper we obtain another criteria for determining whether an
arbitrary proximate order o(r) is a proximate order of the entire function f(z).
We then obtain a necessary and sufficient condition for f(z) to be of perfectly
regular growth with respect to its proximate order o(r). We also obtain a number
of relations involving »(») and o(r).

2. — We start by proving a lemma.

Lemma. If o(r) is a proximate order satisfying (1.1) and (1.2), then )

r

(2.1) f 1971 qf ~

T

potr)

as y —»oco.
[

g

Proof. Integrating by parts, we have

fr#’“’"l dt = [#=e - ot g

To

o
—- fzg“’—l{g(t)— o +1to'(t)logt}dt.

2

To To

Since p(r) satisfies (1.1) and (1.2), we have

o<t

2

o) = o + o(1), to'(t)logt = o(1) .

So, we have
T
70

(1 + o(1)) ft@“)*l at = —g—) +0(1),

Ta

(1) 75 is a positive constant which need not be the same at each occurrence in the
present paper.
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which gives

r

potr)
Ol d3 ~ as ¥ — co.
[4

.
7o

Hence the Lemma.

Theorem 1. Let f(z) = a,2" be an entire function of order o (0<
n=0
< p < o0) and let o(r) be an arbitrary prowimate order. Then o(r) is a prozimate

order of the entive function f(z) if and only if

(2.2) 0 << y=1lim sup (r72" »(»)) < oo,

ro== oo

where () denotes the rank of the mazimum term u(r) in the entire series for f(2)
for |z] =

Proof. Since f(z) is an entire function of finite order, we have ([2], p.32)
log M(r) ~logu(r) as 7 —> oo,
s0, if g(r) is a proximate order of f(z), (1.3) gives

(2.3) 0 < lim sup (™" log u(r)) = T < 0.

T3> o

Now, if > 1 and lim inf (r~°" »(r)) = J, we have

r—>x0

r kr T
log u(kr) = 0(1) -+ f -1 »(t) dt+- f 1 p(t) dt > f (86— &) 291 dt -+ »(r) logk,

or
8 — g)retn
(2.4) logu(kr) > (-~—Q—§)-— - »(7) logk ,
in view of (2.1). Dividing both sides of (2.4) by (k)*", we get

log u(kr) d—e 120 y(r) 7o

(2.5) (Tor)eten > 0 (brjeEn Ty (for)etn
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Proceeding to limits and making use of the result ([1], p. 33)

(2.6) (Fr)e®" ~ J2 '™ as 1 — oo
for every k satisfying 0 << k < oo, we get

5+ yologk

2.7 4
(u.l) i2 ng

Also, we have, if y < oo,
log (k) < O(1) + f (y + &) 71 At - »(kr) logh

(y+ &) ro”

-+ »(kr) logk,

in view of (2.1). Dividing throughout by (k)®*”, proceeding to limits and
making use of (2.6), we get

14 gkelog &
(2.9) p 2o tlogh)

o ke

Now, it I'>0, (2.9) gives y >0 while if 7 < co by (2.7) we have y < oo
80 that if 0 <C 7' < oo we have 0 <y <C co. On the other hand, if y >0, (2.7)
gives T'>0 while by (2.9) y << oo implies 7' << oo so that if 0 <y << oo then
0 << T' << 0. Hence the theorem.

Theorem 2. Let f(z) =3 a,2" be an entire function of order o (0 <<
n=0

< o << o). Then f(z) is of perfectly regular growth and type T with respect to its
proximate order o(r) if and only if

(2.10) p(r) ~p T ¥2" as r — oo,

where »(r) denotes the rank of the mazimum term p(r) in the entire series for f(2)
for | 2] =7
Proof. Let

Lim {7~ logu(r)} = T,

r—>®
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so that, for » >, = (),
(2.11) T — g) < log u(r)y << 12 (T ~¢).

Now, if a >0,

rii+a) r(1+a)
[a;"l y(w) dw «J 2=t v(ax) do— f =t v(z) do =
r 0 0

— logu(r(1 -+ @) — logu(r) < (T + &) 17 (1 + @) — (T— g) 127,

in view of (2.11). But

ra+a) rii+a)
' W) a
J zty(w) de > v(r) | ot dm> T
so that
V(?‘) “ o) Lolr) i
11 a < (.T + E)(l + a)- PR LR g— (T___ 8) petn
or
1+
M) (7 ) (1 e (P g
W” @

= To(){1 + a + o(a®)} + . ; “’{(1 + ) 4 13},

Sinee @ is arbitrary, we get

»(7)

lim sup o
T,

T @

< oT'.

.
Similarly, considering f x-t p(z) do and proceeding as above, we geb

T(l—a)

v

11in>1°1°1f i > oT .
Hence
m »(r) _ Q_T )

v 727

[}
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Now, let
. ov(r)
rlirg 7o) =eT
then, for 9'>7'; = 'r:,(e),
(2.12) (0T — &) 12" < w(r) < (oT + &) 72",

Differentiating the relation (1.4) with respect to », we get for almost all
values of 7,

) fp(r) = v()fr,
where u'(r) denotes the derivative of w(r). Substituting in (2.12), we get, for
almost all > 7,
(911___ 8) ,'.Q(T)"‘1< M’(?)/,u()) < (QT + 8) Tg(r)—-l .

Integrating between the limits 7-; to » and making use of (2.1), we get, for
all >,

(T____8> 7.Q(f') < log M(,) < <T + £> ,).@(r),
4

which gives

log u(r) _ P

peln)

lim

r—>

This prove the theorem.

3. — Let g(r) be a proximate order of the entire function f(2) =3 a, 2

of order p (0 << p<< co) and let

(3.1) lim SUP log J(r) _ . sup logu() T

. . — )
s> IDf retr) reo inf e t

3 2) Hm sup »(r) Y

resoo inf 7eD )

In the present section we derive various relations between the constants
defined above. We first prove
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Theorem 3. If o(r) be a proximate order of the entire function f(z) =

= > a, 2" of order g (0 << 9 << o0) and T, t, y, 6 are defined as in (3.1) and (3.2),

n=0
then
(3.3) 6<lc’e'W<gT<y,
(3.4) 5<gt<a(1+1og§><y.

Proof. Proceeding to limits in (2.5), we get, in view of (3.1) and (3.2),

(3.5) ' T>6+yglogk

.. b
0 e

>6(1 + Qlng).
o ke

(3.6)
Taking & =1 in (3.6) and k& = exp {(y— 6)/(y0) }in (3.5), we get
t>08lo, ecol>yc">ed,

since exp @ > ew for x> 0. Further, dividing (2.8) by (kr)2*" proceeding to
limits and making use of (2.6), we get

v {1+ o ke logk)

(3.7) T< o

H

y--0 0 k2 logh

(3.8) o

Taking k¥ =1 in (3.7) and & = (y/6)"¢ in (3.8), we geb
T<yld, 9t<5(1+10g%><5—:%
since log(l + ) < @ for x> 0. This proves the theorem.

Remark. Since ¢*>1 4 « for >0, we get, from (3.3), y + d<epT.
This inequality can be further improved as is shown in the following theorem.
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Theorem 4. If the constants have the meaning as before, then
(3.9) y + ot <el,

(3.10) cot<el + ed.

o

Proof. We have, if k = e'/e,

<

kr
logu(kr) = logu(r) -+ fm‘l (@) dw > (t— &) &7 -+ ig” for r >1,,

log u(kr) poln 1ow(r) retn

(Torye®n) > (t—¢) (Ter)eten T 5 yotn) (Toyjetir: ”

Proceeding to limits and using (2.6), we get

r>ly 7
e ep
which gives (3.9). Further,
] 9 1 ] o
log u(kr) <log u(r) -+ V(Z) <(T + )y g 1D ; 7> 1,
2
log u(fer) retn 1 w(kr)
=Rl .
(Jer)etien <(T +¢ (er)yen T o (fr)eter’ ©

Again proceeding to limits and making use of (2.6) once again, we get, finally,

< i.e. ept < T + €d,

T
~+
€

[N

which is (3.10).

Remark. Since, by (3.4), 6 <pgt, (3.9) is a refinement of the inequality
y -+ 0 <epT.
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