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Some Further Extensions

of Banach’s Contraction Principle. (*¥)

Introduction.

The most elementary and by far the most fruitful method for proving theor-
ems on the existence and uniqueness of solutions is the principle formulated
by BanacH (1) and first applied to the proof of an existence theorem by CAc-
croppori (?). For this purpose, extensions of the theorem are of continuing in-
terest. In the present paper few extensions of « BaAnaca’s Contraction Prin-
ciple » have been discussed in detail. A theorem related to the converse of
Banaca’s contraction prineiple is also added.

1.1. — Let X be any set. A funection d from X X X into non negative real
numbers is called a pseudometric on X if it satisfies the following requirements:

(1) Az, y) >0 for all @, y;

(2) if z=y9, then d(z, y) = 0;

(3) d(z, y) = d(y, =) for all z, ¥;

(4) Az, y) < dz, 2) + dz, v) for every triple of points.

(*) Indirizzo: Western Michigan University, Kalamazoo, Michigan 49001, U.S.A..
(**) Ricevuto: 9-I-1969.
(t) 8. BaxacH, Sur les operations dans les ensembles abstraits et leur application aux
équations intégrales, Fund. Math. 3 (1922), 133-181.
(3) R. Caccroppory, Un teorema generale sullesistenza di elementi in una irasforma-
zione funzionale, Atti Accad. Naz. Lincei, Rend. Cl. Seci. Fis. Mat. Nat. 11 (1930),
794-799.
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The function d is called a metric on X if the condition (2) is replaced by the
following one:

@%) dz, ) =0 it @ =9.

1.2. - A metric space X is said to be e-chainable or well-linked if for every
pair (a, b) of points of X and for every &> 0 there exists a finite sequence a, ,
@2y +ey @, Of points, of X, with @ = a,, ..., and a, = b, such that d(a, , a,,) < ¢
for every ¢ << n. In other words, « and b can be joined by a chain of steps at
most equal to e.

Remark. Every connected metric space is well-linked but the converse

is not true. For example the set @ of rationals is well-linked but not connected.
However, the converse holds if X is compact.

2.1. - A mapping T' of a metric space X into itself is said to satisty a Lip-
scHITz condition with LipscuiTz constant A if

a(T(p), T(g)) <2 d(p, q) (p, g X).

If this condition is satisfied with a TnpscrITZ constant A such that 0 < 1 < 1,
then T is called a contraction mapping.

2.2. — A mapping T of X into itself is said to be locally contractive if for
every z € X there exist ¢ and A (¢>0, 0 <1< 1) which may depend on z
such that

b, (IES(my &) :{,’1/ l d(w} y) < 8} =
= d(T(p), T()) <2Ad(p, q) (P, g€ X5p #*q).
2.3. — A mapping T of X into itself is said to be (g, A)-uniformly locally

contractive if it is locally contractive and ¢ and 1 do not depend on 2.

2.4. — A mapping 7': XX of a metric space X into itself is said to be
nonexpansive (e-nonexpansive) if the condition

A I(p), T(Q)<dlp, q),
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holds for all p, ¢ € X [for all p, ¢ with d(p, ¢) < ¢]. If we have strict inequality
sign for all p, g€ X, p 5% ¢ (for all p, g€ X such that 0 <<d(p, q) <<e), then
T is said to be contractive (or e-contractive).

Remark. The assumption d(Z(p), T(q)) < d(p, q) is not sufficient for the
existence of a fixed point. For example if T'is a mapping of I, into itself def-
ined by

T(2) = +/a* +1,

then 7' does not have a fixed point.

3.1. — Theorem. ZLet T be e-contractive mapping of an e-chainable metric
space X into itself, i. e.

0 <dz, y)<e = aA(T(x), T)) <d(@, y), Va, yeX,
T =Y, satisfying

HaeX): {I(w)}>{T"w)} with lim Th(z) e X .

i—>

Then 1 has a unique fized point.

Proof. Bince (X, d) is e-chainable we define, for every =z, y in X,

a(z, y) =int 3 d(@.y, @),

i=1

where the infimum is taken over all e-chains z,, #;, @, ..., @, joining = =,
and ¥ =1v,. Thus 4 is a distance function on X satisfying:

1) AUz, y) < dj(w, y),

2) d(@, y) = d (@, y) for d(w, y) <e.
From (2) it follows that a sequence {=,} is a CAUCHY sequence with respect to
d, if it is a CAUCHY sequence with respect to d and is convergent with respect

to d, if and only if it converges with respect to d. Therefore, since (X, d) is com-
plete (X, d.) is also a complete metric space. Moreover, T is e-contractive mapping
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with respect to d,. Given , y € X (# £ y) and any e-chain a,, Ty, Bay euey By
with #, = 2 and #, =y, we have )
d(z;, zy)<<e (t==1, 2, .., n).
So that
ALoy, To) <oy, z)<e (2 =1, 2, ..., %).

Hence Tw,, Tz, ..., Ta, is an echain joining T» and Ty and

4(T@), 1) < 3 AT, T@) <3 Aoy, ),

i=1

Ty @1y Poy ...y &, being an arbitrary e-chain, we have
d(T(@), T(y)) < d(x, y).

Thus T’ is contractive with respect to d,. We have already proved that 4, is a
complete metric space. Hence, by theorem 1 of [8] has a unique fixed point.

3.2. — Theorem. Let T be an (g, A)-uniformly locally contractive mapping
of a complete e-chainable pseudometric space X into itself. Then T has a unique
fized point.

Proof. TLet a be an arbitrary point of X. Consider the e-chain:
@ = Ay, Ay, Gy ..., O = T(a).
By the triangle inequality
ke
(1) dla, T(a) <> Ay, a;) <ke.
f==1
For a pair of consecutive points of the e-chain the condition p, q € S(z, &) =
={y|d, y)<e} = d(T®), T(¢g)) <A d(p, q), p +* q, is satisfied.
Let @ be an arbitrary point in X. Now set a,= T'a, ¢, = T* ¢ and in general let
tp= Ta, =T a . We shall show that the sequence { a,}is CAUCHY. In fact, we

have .
dia, , a,) = d(T"(a), Tm(a)) < A d(a, @)
<< 2v"{d(a) a’l) + d(a’:ly az) e d(am—n—ly a’m-—n}
< in (Z(CL, al){l —1‘— s _}__ A2 - + lvn—n-—l}
in
<‘1T'}‘ d(a, (Ll)
/“bn

<7 d(a, T(a))

from (1).
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Since A << 1 this quantity is arbitrarily small for sufficiently large n. Thus
{a,,}is a CAUCHY sequence. Since X is complete lim «,, exists. We set a, =lim a, ,

T O n—>co
then by virtue of econtinuity of 7, T(a,) = 7'lim a, =lim @, ==1im @,, = a, .
n— e n—r o0 n—>o

Thus T has a fixed point a,, i. e. T(ay) == .

In order to complete the proof we have to show that ¢, =1lim a, is a unique
fixed point satisfying T'(a,) = a, . nre

Let a, and b, be two different fixed points, 1. e. T(a,) = a, and T'(by) = b, ,
a, 7= by . Then a, # b, implies d{a,, b,) > 0.

Now

A(T(ay) , T(by)) =lim @(T(a,), T(b,)) = d(T(a,), T(bn)) when # — oo,

hence

n

@) A(T(ar), T00) < o afas, Tib) -

Let @ be an arbitrary point of X. Consider the chain a, = a;, @y, ..., @4y ==
= b = T(b;). Then by the triangle inequality

(3) Aay, T(by) < Ek: ag, ) <k, .

== 1
Therefore, by (3) equation, (2) becomes

Z’n
1—2

A(T(ao) , T(bo)) <

kE,—~0 as n —> co.

Thus d(a,, b,) = 0, which is impossible unless @, = b, . Therefore @, is & unique
fixed point for 7.

4.1. — A subset M of a metric space (X, d) is a straight set, provided, for
every three points z, ¥ and #z in M at least one of the following holds:

(1) A, 9) +dly, ) = dlz, #),
(2) d(@, 2) + dlz, y) =d@, y),

(3) Ay, @) +dz, 2) =d(y, 2).
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A straight set is of Type I, provided, it has only four members, i.e.
M={x,y,2,t}, and d(z, y) =d(z, t) =m, d@, t) =dy, 2) —=n, and
d(w, 2) =d(y, t) =m 4+ n, where m and » are positive real numbers. A
straight set is of Type II if and only if is not of Type I.

4.2. — Theorem. ZLet T be (e, A)-uniformly locally contractive mapping
of a straight set of Type II. Then T is globally contractive with the same A.

Proof. A straight set of Type IT together with «, b also contains a metric
segment whose extremities are e and b that is a subset isometric with @ subset
of length d(a, b) in I/*. Also the straight set of Type II are metrically equiv-
alent to subset of the real line.

Using these facts, we have, if p, ¢ M, then there are points z,, #,, @,
veny B, With @ = 2, and b = ,, such that

dla, b) <> A(®imy, @) and  d(w—y, @) <é&.

i=1

Therefore,

aT@), T0) < 3 d(T@e) , T,)

i=1

<A A@ir, w) =Ad(a, b).

i=1
Hence the theorem.

The above theorem is a generalization of a theorem by M. EpELSTEIN [7]
in which he has taken X as a convex and complete metric space. Thereby we
have the following

Corollary. If X is a convew complete metric space and T is an (e, A)-
uniformly locally contractive mapping of X into itself, then T has a unique fived
Ppoint.

Proof. By proposition 1 [7] T becomes a globally contractive mapping
of X into itself. Therefore, by BANACH’s contraction principle 7 has a unique
fixed point.



7 SOME FURTHER EXTENSIONS ... 145

5.1. — Denote by 7 the family of all functions A(z, ¥) satisfying the following
conditions:

1) Az, y) = Z(d( J)) i.e. A is dependent only on the distance z and v.
(2) 0 < Ad) <1 for all d> 0.
(3) A(d) is monotonically decreasing function of d.

Let (X, d) be a complete metric space and T a contractive mapping of X into
itself satisfying

Ad(T(x), TH) < Mdw, y)d, y),

where z, ¥y € X and Az, y) € F. Then it follows by a theorem by RaxorcH [15]
that the iterated images T'(x) of X shrinks to the point & of X. This can be
written in the form

n X)) ={&}.

n=

Since this formula does not involve a metric and has a topological character, it
is natural to ask the following question:

Let X be a compact metrizable topological space and T a continuous mapping
of X into itself which has the property that n T7(X) ={£}. Is it possible to
find a metric d*(@, y) generating the given topology of X such that the mapping
T is contractive with respect to d*?

The question was answered in the affirmative in [16].

Let P be a subspace of metrizable topological space X. Let R denote the
set of all contractive mappings of P into itself satisfying d(Tx, Ty) < Me, y)-
-d(x, y), where z, y € P and Mz, y) € F, and § denote the set of all continuous

mappmgs of P into itself such that n 7*(P) ,_{5} a singleton.

5.2, — Theorem. .1 metricable space I is compact if R = 8 for every
nonempty closed subset P of M.

Proof. Wewill prove the theorem by contradiction. Let us assume that M
is not pre-compact, and d* is the metric on I generating the given topology
on M. Then there exists an ¢ and an infinite sequence{ «, } such that d*(a,, , 2,) > ¢
for m # n. Therefore the nonempty set P ::{%,,} is closed. Now we define 7
as follows:

T{ay) = m, and T(®,) = pyy -
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This mapping for every positive integer n belongs to R, and is contractive
on P, by hypothesis. Assuming d as the metric on P associated with 7 we
will prove that {#,} is a CAvcHY sequence with respect to d. Therefore, {,}

will also be a CAUCHY sequence with respect to d*.
We will first prove that {w,}is bounded. Assume T(#,) == x, and let

(1) Ty = T(,) (n=0,1,2, ...

Since 7' is a contractive mapping, the sequence d(w, , ,.;) is by (1) non-
increasing. And also by the assumption 7'(z,) # x,, it follows that

@) @y, paq) <A@y, 2) (n=1, 2, 3, ...).

Again by the triangle inequality
(3) (Z((L‘o ’ mn) < d("”o; '771) ‘.L‘ d(wl ’ mn—{—l) +‘ d(wn ? mn+1) .
And by the help of (2) we can write (3) as

Ay 5 @) <A@y y ) - Ay, B1) + Ay, Barq) ,

or

Aoy @) <2 @y, x1) + A@1,y Put) ,
or
(4) Aoy @p)— (@1, Bnyy) <2 A, @) .

Now by the definition of 7'
(5) A@yy Bupy) = YT(wo), T(@,)) < Hdwo, ) Ao, @) .
Hence, by (4) and (5),

d(@y, 2)— A(d(mo ’ J/‘n)) d(@o, @) <2 d(wy, @),
or
{1— Nd(wo , ))} Ao, @) <2 Ay, @),
or

2 d(wy , @)

AUy y @a) < 1= Ad,, =)
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Now if d(x,, 2,) > d, for a given d, > 0, then by the monotonicity of A(d)
it follows that A(d(z,, z,)) < A(d,) and therefore

2 dfx, , ) 2 d(ry, ay)
Uy, 2,) << = (.
Ao, ) < Wd@e @) > 1 — 2dy)
Hence
(6) Ay, ©,) < R (n==1, 2, ...),

where B = max(d,, ). Thus the sequence is bounded.
Now for j > 0, where j is any positive integer, we have, by definition of 7,
Bty s Brpin) < A@r 5 Brgs) U@y T1ys)

Taking the product from ! = 0 to ! = n—1 and by dividing both sides by the
same terms, we have

n—1
@y @pps) < Ao, 5) T Movr s 201)
=1
which by (6) reduces to
n—1
(7) d(wn s mn—H’) < R H 2(0);, wl-H') .
I==1

Now we will show that given ¢ > 0, there exists 2 number N depending on ¢
only not on j, such that for every j > 0 there is d(z,, v,,,) <e.

If dw,, w;)>> e for 1 =0,1, 2, ..., a—1, then by definition of 7 and
monocity of A(d) we have Mz, 1) = Ad(w,, wH,-)) < Ale) and by (7) we
have

A0y o) < R [AE)]".

But A(e) <1, and [A(e)]* -0 as n — oco. Therefore, there exists a positive
integer N, not depending on j, such that d(z,, z,,,) < & for every j > 0. This
proves that {wn} is CavcayY sequence. Hence the theorem.

As an application of the foregoing material we prove the generalization of

the following theorem given by DEMARR [6].
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Theorem. If f and g are two mappings of closed unit interval into itself,
such that fg(#) =gf(z) for all ael, |fl@)—fW)|<ea|o—y| and
| glw)— g(y) | < B | @~y |, where B is any positive real number and 0 <o < 1,
then f and ¢ have a common fixed point.

6.1. —~ Theorem. If f and g are two mappings of a closed unit interval
into itself, such that fg(@) = gf(x) for all wel, |f@)—fW)|<a|ez—y]| and
g s any continuous function, then f and g have a common fized point, provided
0 <<oa<l.

Proof. Since a closed subset of a complete metric space is complete
Therefore, a closed unit interval being a subset of R is also a complete metric
space. The condition | f(z)— f(y) | <e|@—y | for @, y in the closed unit inter-
val where 0 < oo << 1 implies that fis a contraction mapping. Thus fis a contrac-
tion mapping of a complete metric space into itself. Therefore by BANACH’S
contraction prineiple f has a unique fixed point in the closed unit interval:
i.e., there exists a unique point x, in I such that f(x,) = =, .

Now it is given that

Tg(x) = gf(=) for all # in I.

Thevrefore, fg(@o) = gf(we) = g[f(@)] = g(w,). Thus g(=,) is a fixed point for f.
But f has a unique fixed point, say =,. Therefore g(z,) = x, and thus =, is a
fixed point for g. Hence the theorem.

7.1. ~ A continuous mapping 7' of a metric space X into itself is eventually
contractive if for every distinet pair @, y € X, theve exists n{z, ¥) a member
of I+ (the positive integers), such that

1) AT(w), TW)<dl@, y).

7.2. — zis proximal to y under T if for each > 0 there exists », a member
of I+, such that

a(T™w), Ty)) < a.

If # and y are not proximal under 7 they are said to be distal under 7.
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7.8. — Theorem. If T satisfies (1), and IL is a homeomorphism of X
onto X, a compact metric space X into itself, then K T K- satisfies (1). In ad-
dition T has & unique fized point.

Proof. By theorem 1.3 [1], K-« and K1y are proximal. Also since K
is a homeomorphism, therefore K and K- both are continuous. Since K1 is
continuous and X is compact, there exists 6 > 0 such that d(w, 2) < dimplies
d(K—l(w), K—l(z)) < d(zw, y). Now Iz) and K~}(y) are proximal under 7,
therefore for each J > 0 there exists #, a member of I+, such that d(T"(K-(x)),
T"(E-'(y))) <d. Hence d((K T E-)(x), (KT K)(y))=d(K T K-(z),
K T E-Yy)) < d(z, y).

Again by theorem 1.3 [1], 2 and K 7 K~Y#) are proximal under 7. Now
choose {n,} € I'* such that n, < n,,; and (K T K-1y(x), (K T E-)"(y)) <1/i .

By compactness of X we may assume that {(K T K1) (w)} — &, and
{(K T E-1)"(y)} — n, for some & and 7 in X. Clearly £ = #. Also the continuity
of K T' L~ implies K T K- =1, so that # is a fixed point of X 7' K. That
this point is unique is immediate.

Since K T K~*has a unique fixed point, K T K np=n, or L K T K~'(n)=
=K1y or T(K'%n) =K1y Thus K~!y% is a unique fixed point of 7.

8.1. — Given a vector space E, a norm on ¥ is a map « —|«| from E into
the set R, of positive real numbers whieh satisfies the following axioms.

(1) [|#] = 0 it and only if @ == 0.

(2) ||[Az| ==| A| || for all A€ K and z € E, where K is the field of real or
complex numbers.

(3) & +y|] <|e| + |y| (the triangle inequality).
A vector space on which a norm is defined is called a normed vectorspace
or simply a normed space.

A normed vectorspace F is called a BANAcCH space if it is complete as a
metric space

8.2. — Let I be a normed linear space. A mapping T of F into itself is
called a contracting mapping if, for all #, y € E,

|T(@)— T <ofz—y]| , where 0 <o <C1.



150 K. L. SINGH [12]

8.3. — A mapping 7' of a normed linear space E into itself is called a non-
expanding mapping if, for all z, ye £,

|2 — 7] < Ja—y] -
Brrs ([2], page 81) has given the following

Theorem. Let K ={w|[z] <1} be a subset of a BaxacH space and
let 7' be a continuous contracting mapping of K into itself. Then 7' has one and
only one fixed point.

Here we would like to remark that the above theorem may be put in even
general set as follows. Af the same time the condition of continuity is super-
fluous.

8.4. — Theorem. Lect K be a closed and convex subset of a finite dimensional
Banach space and let T be a contracting mapping of K into itsclf. Then T has
one and only one fived point.

Proof. Let @, be an arbitrary point in K and consider the sequence
{z,}. Let @, = T(m,), & = T(w,), ... Now

”wn—i-l_“ @y, ” = “ 17('”1;)’— 17(‘7"71—1)” <« ”xn— mn—l” ’
and

“xn — &p—y ” - ” T(mn—l) - T("Bn—z)“ <o “‘fvn—l““ Tnes

Hence

“'Tn+1_ xn” <o ”mn-l"_ D

= 0% ||y — T
Therefore by continuing this process we have
@tz — @, ]| <o [fry— ]| = B, where M = |jw,— | .
Using this inequality we will show that the sequence {wn} is a CAUCHY sequence:
[t — @all < [Tntn— Tnips]| + [Tntn— Tutos]] + [Fnr— a]

< M gnte-t L A gt L - Moo

an

< Mo (1 —i—oc+oc2+...—{—oc1"1)<ﬂll
— &
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. o ; .
Since o<1, T M tends to zero as n tends to oo, and hence {{Un} is a

CAvoHaY sequence.
Since K is a closed subset of a finite dimensional BANACH space, I is com-
plete. Hence 2, converges to some point z, in K. Let @, = T lim , . Then by

n >
the virtue of continuity of T, Tz, = lim Tw, = lim @,,, = @, . Thus the exis-
> n~—>

tence of a fixed point is proved.

Uniqueness. Assume that # and y are two fixed points of T, i.e.,
T(z) = o and T(y) =¥, @ % y. Then since 7' is contracting mapping we have

le—y] = 7@ — T)| <« |s—y],

ie., (1—¢a)|le—y| =0, whence
Theorem is proven.

One can remark that the theorem may be sharpened on replacing the con-
dition that K is a closed and convex subset of a finite dimensional BANACH
space by K as a closed subset of a BANACH space, or even in general by taking
T as a contracting mapping of a BANAcH space F into itself. But here our aim
has been to prove the nonexpanding principle with the help of this theorem
for which the above conditions are necessary. Since for the existence of a fixed
point for nonexpansive mapping the following conditions on the space are nec-
essary.

(1) The space should be closed, (2) bounded, (3) convex and (4) should be
reflexive, as can be seen by following examples.

|#—y] =0, so that  coincides with y.

Example 1. Consider the HILBERT (*) space H (H = R will suffice). Let
D be the interior of the unit ball € = {z| |z| < 1}. The mapping 7' defined by

where ¢ is any vector in H with unit norm is nonexpansive but it has no fixed
point.

Example 2. A transformation in a BANACH space is an isometry which
is a nonexpansive mapping but it has no fixed point.

(3) For definition of IIILBERT space see [1T].
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Example 3. Let H be a HILBERT space (H = R will suffice again).
Let D be a set containing two elements » and y. If we define 7: DD by
T(z) =y and T(y) = @. Then T is an isometry and it has no fixed point,

Example 4. The BaNAcH space ([0, 1] of continuous functions is not
reflexive. Let K:{T e 0[0,1]: T(0)= 0, 71)=1,0 < T(x) < 1}, K is bounded,
closed and convex. Define the mapping f by

HT(@)) = = T(w) .

Clearly, f maps I into itself, T is nonexpansive, but 7' has no fixed point.

Before proving the results in BANacH spaces, we would like to state some
fundamental properties without proofs. The proofs may be found in any standard
book on Functional Analysis such as Functional Analysis by ALBERT WIiL-
ANSKY.

1. A finite-dimensional normed space is reflexive.

2. A finite-dimensional normed space is complete.

3 Any finite-dimensional linear subspace of a normed space is closed.

8.5. ~ Theorem. LetK beaclosed and convex subset of o finite-dimensional
Banach space and let T be a nonempansive mapping of K into itself. Then T
has a wnique fized point.

Proof. Let 7, =@1—1/n) T(x,)+ N (set of natural numbers). Then 7,
is a contracting mapping and hence by Theorem 8.4 has a unique fixed point,
8AY @y, le., T.(w,) = x,= (1—1/n) T(z,).

Since K is closed and bounded, therefore K is compact, the sequence {xn}
has a convergent subsequence {w,,‘} which converges to a point z in K. Now

@a, = (1— 1) T(3,)

Taking the limit as #» — co and using the fact that 7 is continuous, we
get & = T'(z) and hence x is a unique fixed point.

9.1. — Theorem. Let B be @ Banach space, and let T, (n =1, 2, ...)
be contraction mappings of B into ilself with the same constant o << 1, and with
fiwmed points w, (n =1, 2, ...). Suppose that lim T, x = T, for every x € I, where

n—> oo
T'is a mapping from B into iiself. Then T has a unique fized point w and lim u,, — u.

n—r oo
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Proof. Since ¢ <1 is the same constant for all n»,

m [T, e— T, y| <o |o—y] .

But

lm |7, 2— T, y| = | dm (T, 2)—lim (T, )|l .

n->o n—> o > @

Because norm is continuous or ||T(x)— T@)| <ealz—y| . As

[ im (7, @) —lim (T, )| = | T() — T(»)] -

n—> 0 7> o

Thus T is a contraction mapping and has a unique fixed point by Theorem 8.4.
We have, for each n =1, 2, ...,

n
[[%on— T3 2 | <—1—°—i—“ [ T @ — ] re B,

Setting m = 0 and z, = u, we have

1 1
ln—ull < |Te — | = 7— [Tn v—TL,] -

But | T, u— T,]|—0 as # — co. Hence

lim ||u,—u] =0 ——e Hm w4, = .

n—> o n—>0

The following corollary is a direct consequence of the above theorem.

Corollary. Let E be a Banach space and let T, (n =1, 2, ...) be
contraction mappings of E into iiself with constants o, (n=1, 2, ...) such that
oy < o, fOr each n, and with fixed points u, (n=1,2, ...). Suppose that lim (T',, ¥)==

fi—> o

= Tz for every x B, where T is a mapping from I into itself. Then T has a
unique fized point w and lim w, = u.

7—>00

Proof. Since otpyy <oy for all m, it follows that lim e, <<1. Now

n=—>rm
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lim |7, 2— T, y]| <o, Jt—y| since norm is continuous. Hence

=> 00

im |17, 2— T,y| = | im (T, ») — lim (T, y)| = | Tz — Ty]| ,

> O N> n—>c0
[To— Ty| <o, |2—y] .

T'w==lim (T, @) is a contraction mapping. Moreover ; will be constant for 7,
n—>

(n =1, 2, ...). Thus the proof follows by Theorem 9.1 by replacing ¢ by «; .

Finally the author wishes to express his sincere thanks to Mrs. AswaA SINGH
for minimizing the mistakes by proof reading.
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Abstract.

The conlraction mapping principle of Banach remains the most fruitful for proving
the existence theorems in Analysis. For this purpose the extensions of the theorem are of
continwing inlerest. In the present paper generalization of a few vesults of Edelstein have
been given. In section & it has been shown that on a straight set of type 11 every (e, A)-uniformly
local contraction is also a global contraction. In section 5 taking the set of continuous and
contraction mappings on o metrizable subspace P of a metric space X into itself the neces-
sary and sufficient condition for the compactness of X is shown. The remaining sections
conlain the generalizations of a result due to De Marr [8] and some resulls on eventual
global coniraction. In the last, two theorems in Banach spaces are added which gener-
alize the result of Bers [2].






