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Erpox DYER in 1954, ALLEN SHIELDS in 1955 and LESTER DUBINS in 1956
independently conjectured that if f and ¢ are continuous functions which map a
closed interval of the real line into itself and which commute, then they have
a common fixed point. This has been disproved by Bovcr [1] and HUNEKE [3]
independently.

Arrex SmELDS [7] proved that if f and g map the unit dise | 2| <1 in
the complex plane into itself in a continuous manner, if they are analytic in
the open disc and if they commute [fg(z) = gf(z) for all 2], then they have &
common fixed point [f(z,) =& = ¢(%)]. More generally, any commuting
family of such functions has a common fixed point.

We prove the following theorem for linear funetions which commute:

Theorem 1. If f(g) =az +b, as:1, then g¢z) =cz --d commutes
with f if and only if they have @ common fized poing.

In order to prove the Theorem we need the following results:

Lemma. ZLetf and g be linear functions in the complex plane. Then f
and g commute if and only if fg(0) = gf(0).

Proof. Let f(z) =az + b and ¢(z) =cz +d. fg=gf if and only if
Hg(z)) = ¢(f(2)). But

f(9(2)) ==flcz + @)= a (¢ + d) + b = acz + ad + b,
and
g(f(2)) = glaz + b)=1c (az + b) +d = acz 4 bec + 4.

(*) Indirizzo: Memorial University of Newfoundland, St. John’s, Newfoundland,
Canada.

(**) This paper was presented to the Canadian Mathematical Congress meeting
at Kingston in 1967. — Ricevuto: 26-XI-1968.
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Therefore, fg = gf if and only if ad -+ b = be -+ d. Now,
f(9(0)) = f(d) = ad + b, g(F(0)) = g(b) = be +- 4.
Hence fg = ¢gf if and only if
(9(0)) = g(#(0)) .

Corollary. If fl&) =az +b and g(z) =cz - d, then fg=gf if and
only if f(d) = ¢(b).

Definition. A point 2, which is invariant under a transformation is
called « a fixed point of the transformation» .

The linear functions of the form f(z) = az + b, @ =1, have unique fixed
points. The linear function f(z) = = fixes all points. These are the only linear
functions with fixed points. The only linear functions which have no fixed
points are those of the form f(2) =2 -+ b, b 54 0.

The identity function f(z) = 2 commutes with every function.

Proof of Theorem 1. Let f and g commute and z, be the unique
fixed point of f. Then we prove that z, is a fixed point of ¢g. fy == gf implies
that f(g(z0)) = g(g(=). Now flg@)) = gla); since flzo) =2 -

This gives ¢(z,) a fixed point of f. But the unique fixed point of f is z,.
Therefore, g(z,) = 2, .

Thus f and ¢ have a common fixed point.

Conversely, let f and ¢ have a common fixed point. We want to prove that f
and g commute.

The unique fixed point of f is b/(1 — a). Therefore 2, = b/(1— a). Since
2= g(&)=1c2z, + d, we have d=(1—¢)z,=(1—¢)bj/(l-—a). This gives
ad +b =cb 4+ d. But ad + b = f(d) and ¢b 4 d = g(b). So that f(d) = g(b).
Hence by Corollary, we get fg = gf.

Thus the Theorem.

A similar result in real number system has been given by Szeuin [6].

KaAxuTant [4] and MARKov [5] have shown that if a commutative family
of continuous linear transformations of a linear topological space into itself
leaves some non empty compact convex subset invariant, then the family
has a common fixed point. Dz MARR [2] proved that if B is a BANACH space
and is a non empty compact convex subset of B and if 7' is a commutative
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family of contraction mapping of into itself, then the family I' has a common
fixed point.

Here we prove the following theorem. The proof is very simple but the
result seems to be new and interesting.

Theorem 2. Let I beacomplete metric space. If f and g ave two contraction
mappings of B into itself and if they commaute, then they have a common fiwed
point.

In the proof of this theorem we will make use of BawacH contraction prin-
ciple, which is stated in the following form:

«If T is a contraction mapping of a complete metric space I into itself,
" then T has a unique fixed point. »

Proof. The functions f and g are commuting contraction mappings
of F into itself, i. e.

f9(@) = gf(w) for all # in .

By the contraction mapping principle, we know that f and g have unique
fixed points. Let @, be the unique fixed point of f. Then

fo(xy) = gf(m) = g(@) -

Thus g(x,) is a fixed point of f. But f has a unique fixed point. Therefore g(x,) =, .
Hence the proof.

Remarks. (1) If fis a contraction and g is a mapping commuting with
{, then they have a common fixed point.

{2) The theorem will remain true for a family of commutative contraction
mappings.
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