Riv. Mat. Univ. Parma (2) 10 (1969), 71-80

Karvaxy Das Garag (%)

On Heat Transfer

in Turbulent Boundary Layer on Flat Plate. (

1. - Introduction.

The experiments made by TowNsEND [1] on the structure of turbulent
boundary layer over a smooth plate show that the similarity variable & = y/u
exists, so that the mean velocity and shearing stress can be expressed as the
funection of &, when = is the distance along the plate, 51 em. beyond the entrance
to the working section of wind tunnel. This similarity property led Davies [2]
to solve the problem of heat transfer. He solved the problem with the assump-
tions:

(a) The difference between the temperature of surface of the plate and
that of free stream is sufficiently small to prevent the buoyancy effect.

(b) The heat diffusivity is proportional to momentum diffusivity.

His solutions required the knowledge of observed mean velocity and tur-
bulent shearing stress. The same problem was considered by BourNe and
DavIes [8] with some modifications. In the next paper, BoURNE and DAVIES [4]
calculated the rate of heat transfer, when the measured values of mean velocity
profile and of eddy viscosity were not available. It is seen that the solution
for eddy viscosity ([4], equation (15)) involves complications due to the presence
of .

We now solve the problem of heat transfer by simple technique and our
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assumptions are:

(i) The surface of plate is kept at the temperature 7, independent of
the distance, parallel to the surface, and that of free stream at 7, . Their dif-
ference is small enough to prevent the buoyancy effect.

(ii) The formulae for distributions of surface shearing stress, temperat-
ure in transition and laminar sub-layers, and for the mean velocity in fully
turbulent, transition and laminar sub-layers are available.

(iii) The Rexornps analogy between heat and momentum transfer is
true, and we assume that their dependence on the £ variable is of same functional
form. We take &, = ¢, where ¢, is eddy heat diffusivity and e is eddy momentum
diffusivity.

2. - The basic equation of energy.

Adopting the usual notation (z, ) are measured along and normal to the
plate with (U, V), the corresponding components of mean veloecity in turb-
ulent boundary layer. Denoting the mean temperature by T, and thermal dif-
fusivity by K, when the frictional heat is neglected, the equation of energy
for incompressible fluid given by Howarra ([5], p. 821) is

o T @ T T
oL =2 gt
1 U V% =% [K w 8”8y]

We see that ¢, is considerable larger than K in the turbulent region,
which we can ignore. Now, we can write the basic equation (1) by the assu-
mption (iii) in the form:

or or 0 or
(2) U— 47T — ==l —].
ox oy oy oy

But TownseND discovered that his experimental results could be expressed
as the function of variable & = y/2, where & measures distance from a point
of 51 c¢m. beyond the entrance to the working section of wind tunnel. But for
our convenience, we take general form &=y/(k 7 to obtain the similarity
solution, where the parameters & and ¢ are to be determined later on.



{3] ON HEAT TRANSFER IN, TURBULENT ...

3. - Calculation of eddy momentum diffusivity.

Now, the RENOLDS analogy is expressed by the relation

J,
(3) T g
o 0U /oy oc, 0Ty

where J, is shearing stress at normal distance y from the plate, ¢, the

rate

of heat transfer at the same point, o the density of air, and ¢, is specific heat

at constant pressure.
From the PrANDTL’S theory of mixing length, we have

J, U2 U\2
4 ¥ 2 — Az .
@ . 0 ! (ay) 4% <?’y)

Hence, from (3) and (4),

oU
— Az y2
(8) € Y P

and the associate velocity distribution is

U 1 yU
(6) E:—logeu+B,

A v

where U, is frictional velocity given by the equation

24 y \1/5
(7 e 0.03 (Uo %> ,

0

with the modifications suggested by GorpstiEN ([6], p. 362). It is good
working formula when RExoLps number is of order 10°, where U, is free stream

velocity and » is kinematie viscosity.

It is shown by Corms [7] that 4 = 0.4 and B = 5.10 for the equation (6)
give close approximation in the crucical zone of turbulent boundary layer.
Thus, the equation (6) and (7) give close approximation in the region of applie-
ability near the plate surface which is the region of importance for calculating

heat transfer from the plate.
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It is also seen from ([4], Fig. 1) that Corrs’s logarithmic formula for veloc-
ity distribution given by (6) is in close agreement with the power law formula

U =172 U7, &% for &£<C0.01
between » =20 cm. and 50 cm. when & = y/x?, where ¢ = 0.90 .

Now, the value of ¢ is obtained by differentiating (6), and putting the value
of U, from (7). It is given by the relation

(8) e= Ay U, (0.03)112 (UL)”"’ .

o @

4. - Similarity solution of heat transfer equation in the fully turbulent flow
over flat plate.

Following the RExoLDs technique of taking long time interval at a point,
the equation of continuity for incompressible mean flow is

. ou v .
9 w Ta T

and the stream funetion y is taken in the form

p =" f(§), where & = y/(k ),
so that

oy ot g g
U:a“y:klw qf(f)
(10)

dy

e X Lar

where dashes denotes differentiation with respect to & The eddy momentum
diffusivity is given by the relation

. o . » \1/10
(11) e=Akat & U, (0.03)1/2 (% U0> .
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Now the equation (2) becomes

p \1/10 g ,
2" S

(12) — g gt f P 4 gt Y (0.03)1/2(
[}
Condition that (12) may have the solution in & only is that » = 0.90.
Tt is seen from the equation (10) that the condition, U may be the function
of & only is that » = ¢ = 0.90.
Now, from the equation (10), we can take

(13) /== (1.72/1.15) T, &35,
Since the power law formula gives close approximation, when plotted against

the variable & == y/a°%, therefore k =1 has been taken in (13).
From the equations (12) and (13), we have

1.72 P g K ,
T 115 A44/0.03 (5 U B0 T 38 (1)
or
1.72 7 £9-15 s+ T
1.15 4 4/0.03 (»/U A0~ g1’
or
(14) ET" = Ce™H5T
where
. 1.72 »
LT (1.15)2 A 4/0.03 (»/Ug)ti”
Hence
'E 1415
(15) T =0 [ (g4 D.

Ex

We have to determine the values of constants ¢ and D in (15) by the boundary
conditions:

T=1T, for&— oo, T=1T, foré=E¢§,,
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and T' = T, at the surface of the plate, where the symbol * denotes the value
of the variable at the top of the transition layer.
Subject to these boundary conditions, the solution of (15) is

K o
(16) T — Tx — / F(E) df/ /-F’(E) déy VVhe]_’e F(f):: (1/{5) 6_.11 51.15'

Ty— T, )
1 I

Assuming that the shearing stress and vertical heat flux at a point in the
laminar and transition layers are independent of 4 and are equal to J, and ¢,
respectively, we have from ([5], p. 823) ¢,= o¢,U, T,, where T, is the fric-
tion temperature at the top of transition layer, and this quantity also can be ob-
tained from the equation (16) and it is given by the relation Go=—0 €, &-(01'/dy)
at ¥ =g, , namely

(]7) Qo = ¢, M UO (T:y: - TO)

b4

40-10 ]DF(E) de
N

at the given station from the leading edge, where

— p \1/10
M o=~ 4 4 /003 (=),
e 4.4/0.0 i

0

Now,

7, = MU (Te = 1)

U, x0-10 / () dé
M

(18)

The temperature at a point in the transition layer is given by the form (Is1,
p. 831)

T,—T
T,

5 2 "
(19) :—_gloga<—%~7‘/—’+l—ka>—{—oo,

where ¢ i8 PRANDTL number.
It becomes

T,— T,

(20) T

5
:—iloge(5/10‘ +1) +50"
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at the point ¥ =y, .
From (18) and (20) we have

T, — Ty MU, (5/2)log,(540 + 1) - 50

(21) T =" U, x0-10 )
o T 7 [ T ag
&

T—T T— 1T, T,— T, T, - T\ 2
(22) 0(5) = "o !71 = 7 7] - - 711 /1* (1_- - : = "}:
10—11 lo_f:zc Jo“‘l* \ 0 ¥

with

&

M 5/ g, (50 - 5

2 ZfF(f) dé + - U, {(5/2) log,(5i0 + 1) + 56}
s

- ’
U, 010 [ (& dg

]

O —1 1 MU, {(5/2) log,(5hc -+ 1) + 5o}
2 i .

U, 2010 [ F(g) d§
&x

At # =50, 2 =1, ¢=0.72, U,=35 m.[sec., the O-distribution is given
by the equation

(23) 0(&) =1 + 0.1142 B(—1, £r1),
where
B(—1, £55) = f (e~tjt) di, = 46.64 .
1151.15
Table
y (cm.) 0.2 ) 0.4 t 0.6 0.8 ’ 1.0 i 1.2 1
6 0.78975 0.86794 0.90839 0.93601 0.95015 0.96373 ’
|

(Temperature distribution at #= 50 cm. from the leading edge of the plate,
when U, =35 m./sec.).
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An expression for the mean rate of transfer of heat in fully turbulent region
per unit widt of the plane section perpendicular to the plate may be obtained
by the expression

o, f U-(T'— T,) dy at the given station =z, .
Ys
From the equations (10) and (23), it can be written in the form

(24) —1.72 x0.1142 g ¢, U, a® (T, — Ty) f B(— 1, £r1s) 015 f
. E*

The similarity solution of equation (2) in the transition and laminar layer
does not exist in the terms of variable & We adopt an approximate method.

3. - An approximate method of heat transfer problem in the laminar and tran-
sition layers of the flow over the smooth flat plate.

The mean velocity distributions very near the flat plate ([5], p. 824) are
of the forms

U U,y -
(25) = =1, (y, <3)
J
in the laminar sub-layer and
U -
(26) 7 =—23.056-45 log, ¥, (b <y,<30)
J

in transition layer.

An expression for the flux of heat through the region from 4 =0 to ¥ = ¥,
across unit width of the plane section normalto the plate at a distance =50 cmi.
is obtained from empirical velocity and temperature forms ([5], p. 831). We
find that the contribution to the flux in the transition zone, from ¥ =5 to
y = 30 is given at # = 50 cm. by the expression:

300(U 304U,
@7) oy [U(T—To)dy =g, (T1—To) U, [[—3.05 + 5log, y,].

5v/l/J sv[U,
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.[1»_ MU(5/2) log,(z 2 c;Iy, +1 =20+ 50}] a

with

H =7, oo f P(£) A2 + MT,{(5/2) log(52 & + 1) + 5o}
&4

The contribution to the flux by laminar sub-layer is given by the expression

5/U

M7,
(28) (Tl““To)Qcpfi’/J [1_“%‘7/,] dy

0

6. - The comparision of theoretical and experimental evaluations.

TowxNsSEND shows that his results over the plane wall are function of y/w,
2 being measured from a point 51 cm. beyond the entrance to the wall. We assume
that the effect of presence of completely laminar layer, near the leading edge
of the plate may be allowed by similarity variable £= y/2™%, where # measures
distance from the leading edge of the plate. We have taken the example assoc-
iated with the highest free stream veloecity (35 m./sec.), used by Kriis [8], so
that the complicated effect due to the presence of completely laminar region
near the leading edge is as small as possible, We find that y/z?, where ¢ = 0.90
could be used to provide reasonably satisfactory similarity variable.

Taking appropriate values of o, ¢,, v, & and o = 0.72, 1= 1, we compute
6-distribution and the rate of heat transfer for the length z == 50 em. from the
leading edge. When we plot O-distribution against the variable %, it is seen
that there is no significant difference between theoretical and measured
results.

We also find that the net rate of heat transfer @ is obtained by adding
expressions (24), (27) and (28). We obtain

_9 = 0.55010 -+ 0.02407 - 0.00189
-1,

or QT,— Ty) = 0.57606 Watts per degree centigrade against 0.56 Watts
per degree centigrade measured by KrIAs.
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Abstract.

In this paper we have considered in forced convection the problem of heat tramsfer from
the surface of heated flat plate to air stream by the use of similarity properly, suggesied by
Townsend[1]. It is found that if logarithmic formula for velocity distribution is represenied
by power low formula in the terms of similarity variable & only, the problem of heat iransfer
can be solved by following the Renolds analogy beltween heat and momenium transfer
[(5], p. 819).

We take the value of eddy momentum diffusivity from the Pran dil’s theory of mizing
length. Assuming the validily of empirical formulae for disiributions of surface shearing
stress, temperature in transition and lawinar sub-layers and for the mean velocity in the
fully turbulent, iransition and laminar sub-layers, the problem is completely solved. When, we
compare the theoretical results with ewperimental resulls obtained by flids [8], it is seen
that they are in close agreement.



