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Elements of Linear Polygenic Transformations

and Pseudo-Angles of a Complex Vector Space. (*¥)

1. « Pseudo-conformal geometry.

It is well-known that the study of analytic functions of one complex variable
is identical with that of conformal maps 7. However, the extension to the anal-
ogous situation for two or more complex variables, is not related to the study
of conformal correspondences 1' execept in certain specialized cases. In 1907,
PoixcARE [1], termed a map T of analytic functions with non-vanishing Jacob-
ian, a regular transformation 1. However, from a geometrical point of view,
Kasner found it more convenient to term such a correspondence a pseudo-
conformal transformation T. Also, the study of the group of such corresponden-
ces T, was called pseudo-conformal geometry by the latter author. Presently,
this is standard terminology.

The geometry of the pseudo-conformal group G of a pseudo-conformal
space ., of finite dimension 2n > 2, was characterized by means of the
pseudo-angle by Kasner [2] and also by Kasxer and DrCrcco [3, 4].

In the present article, pseudo-conformal geometry is extended to a complex
vector space V, either finite or infinite dimensional, without the use of an inner
product or metric.

(*) Indirizzo degli Autori: J. DeCrcco, Hlinois Institute of Technology, U.S.A.;
J. Syxowrec, Indiana University Nortwest, U.S.A. .
(**) Riecevuto: 14-X1-1969.
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2. « Polygenic and pseudo-conformal linear transformations.

Let V denote a complex vector space, that is, V is a vector space for which
the field of scalars is the complex number system [5]. Such a vector space is
called a contravariant vector space V, and the vectors of this complex vector
space V, are said to be contravariant vectors.

A single valued map 7 on the contravariant vector space V into a non-
empty subset of V, is called a polygenic linear transformation T if and only
if it possesses the following two properties, namely

(A) T2 + ) = T(4) + T(4) for all 4, A€V,
(B) T(z 1) =z T(}) for all Ae V, ze R#

for every real scalar z of the real number system R#.

The concept of a polygenic function was introduced by KAsxER in 1927
6, 7, 8].

The extension to differentials of first order of a polygenic correspondence,
is depicted as a polygenic linear transformation 7.

A polygenic linear transformation 7' is termed either direct pseudo-conformal
or reverse pseudo-conformal it and only if either Tz A) =2z T(4), or T(z 1) =2 T(1),
for every finite complex number 2 = z -+ .

Theorem 2.1. A polygenic linear transformation T is either direct pseudo-
conformal or reverse pseudo-conformal if and only if either

(2.3) T@A) =14 T(A) for all 2e 7V,
or
(2.2) T 2) =—1i T(A) for all 2e V.

This result follows directly from properties (A) and (B) and the definitions
of direct and reverse pseudo-conformal.

Let B denote the totality of all polygenic lirear transformations T, I™* be
the set of all direct and reverse linear pseudo-conformal transformations 7,
and I" be the set of all direct linear pseudo-conformal trasnformations 7.

Theorem 2.2. Relative to composition, each one of the three sets R, I'*, T
i8 a semi-group with identity I, such that I' is a proper subset of I, and I'* is a
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proper subset of R. That is,

(2.3) p==l'cl*cR.

Moreover, each of the tawo sets R and I' is an associative ring with identity I relat-

fve o vector addition and composition.

Here, complex scalars are permissible in both I" and I'*, but only real scal-
ars are allowed in R. Thus, I"is a complex vector space, wheras R is & real
vector space.

Theorem 2.3. For every polygenic linear transformation T, there is a
unique direct lincar pseudo-conformal transformation T, and a unigue reverse
linear pseudo-conformal transformation T, , such that

(2.4) 2 I(2) = Ty(A) + Tu(A).
Moreover,

T, = T(A)—i T(i A)
(2.5)
Tod) =T +iTGA).

For, it is clear that if there were such a decomposition, then

2 T(2) = TyA) + TaA)
(2.6)
2 T(4 A)= 1 To(2)— i Ta(R) .

Solving these for Ty(1) and Ty(2), (2.5) are obtained.

3. - Some applications.

The concept of a polygenic linear transformation T, may be applied to
various parts of real and complex mathematical analysis.
The following is a list of five illustrations.
(I) Let C» denote m-dimensional complex number space, and let f be a
polygenic function on some open set of €, that is, the real and imaginary parts
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of f are continuously differentiable on the open set. Then the differential of f
at some point of the region is

n

(3.1) df = 2 — d~h + 2‘ dzh

K1 02
(See [9, 10, 11, 12].) This differential is a polygenic linear transformation.

(IT) The HILBERT space I* is that of all sequences (a,) of complex numbers
such that

z'&71i2< ‘iL‘ oo .
n=0

Then the map
(3.2) T(a,) = (@) ,

which transforms each sequence (a,) of 12 into the sequence whose terms are
the complex conjugates of the corresponding ones of the original, is polygenic
linear on 12

(III) Let & be the space of all infinitely-differentiable complex-valued
functions f of a single real variable ¢. The map 7T on &, defined by

| &

(3.8) Tf = %7

=¥

for every f in &, is a polygenic linear map 7' on &.

(IV) In the space C of continuous complex-valued functions defined on a
compact interval [a, b] in R#, the map T for which

(8.4) Tf =g,
where
(3.5) g@) = [ 1) &, a<z<b,

is a polygenic linear transformation 7' on C.
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(V) Consider the space V of all bounded linear operators on a complex
Hirserr space H. Consider the map 7' such that

(3.6) T(A) = 4%,

where 4% is the adjoint operator of 4 in V. By the elementary theory of adjoint
operators [18, 14, 15], 7' is found to be polygenic linear on V.

Note that examples (IT), (III), (IV), (V) are examples of reverse linear
pseudo-conformal transformations, wheras example (I) is neither a direct nor a
reverse linear pseudo-conformal transformation.

4. - The complex covariant vector space "* of covariant vectors.

A polygenic linear functional (2, #) on a complex vector space V of con-
travariant vectors 2, is a polygenic linear transformation (4, gx) for which
the domain is the complex contravariant vector space V of confravariant
vectors A, and the range is & subset, proper or improper, of the complex number
system.

It is assumed that the set of all polygenic linear functionals (4, u), is in
one-to-one correspondence with a set T* of elements u.

By appropriately defining vector addition and complex scalar multiplication
of covariant vectors g, it follows that this set is a complex covariant vector
space V* of covariant vectors u. (See [16].)

In addition, the linear functional (4, ) is a polygenic linear functional
both in the contravariant vector 4 and in the covariant vector pu.

Theorem 4.1. A polygenic linear functional (A, w), is a single-valued
complex function whose domain is the Cartesian product of the complex contravar-
iant vector space V of contravariant vectors 1 and of the complex covariant wvector
space V* of covariant vectors p, and whose range i & non-emply subset, proper
or improper, of the complex nwmber system. It is bilinear in the sense that it pos-
sesses the following two properties:

(A) If Ay, Ay, A€V and py, po, p€ V¥ it obeys the two distributive laws

(A + Aoy p) = (Ae, ) + (Aay p)
(4.1)

(/17 M+ Mz) = (27 ;“1) + (l; ,“2) .
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(B) It is linear homogeneous relative to the real number system R%. Thus
for every contravariant vector 2, for every covariant vector u, and for every finite
real number z, it satisfies the linear homogenecous condition

(4.2) (A w) =4 2u)=2(4, ).

A polygenic linear functional is said to be either direct or reverse pseudo-
conformal velative to the contravariant vector space V, if and only if

(4.3) either (¢, pu) =2 (4, ») or (22, w) =24 u,

for every contravariant vector 4 of the contravariant vector space V¥, and for
every finite complex number z =2 + 14 .

Dually, a polygenic linear functional (4, p), is considered to be either direct
or reverse pscudo-conformal relative to the covariant vector space V¥, if and only
if
(4.4) either (A, z u) =2 (4, u) or (A 2p) =2 (4, w),

for every covariant vector u of the covariant vector space V¥ and for every
finite complex number 2z = & -+ 4.

A direct pseudo-conformal linear functional [2, p], is a polygenic linear function-
al that is direct pseudo-conformal relative to the contravariant vector space
¥, and reverse pseudo-conformal relative to the covariant vector space V*

Dually, a reverse pseudo-conformal linear functional [, u] is a polygenic
linear functional that is reverse pseudo-confermal relative to the contravariant
vector space V, and direct pseudo-conformal relative to the covariant vector
space V*.

A polygenic linear functional is a direct pseudo-conformal linear functional
if and only if

(4.5) [z 4 p] =2[4, u] and (% 2 ] =z[2 ul,

for every finite complex number 2 =z + 1 4.
It is clear that a reverse pseudo-conformal linear functional [4, u], is the
complex conjugate of a direct pseudo-conformal linear functional.

Theorem 4.2. For any polygenic linear functional (2, w), there exists
one and only one set of two direct pseudo-conformal linecar functionals [A, u), and
[4, ul., such that

(4.6) (A w) + @A dp) = [ ph +[% &)
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Moreover ,

2 ply =R ) —i (@A p) =1 (A tp) + (14, in)

(4.7)
202, pl. = (Ay 1) + 1@ A ) —1 (4 ) + (i Ay i)
Tor,
Oy )+ G2y i) =D i + %
(4.8)

(@2 p)— (A 1 p0) =0 [4 pli—1[2 ple-

Solving these for [2, u], and [4, ul., the equations (4.7) are found. Also, it is
obvious that [4, x], and [, x], ave two direct pseudo-conformal linear function-
als.

A polygenic linear functional (4, ) is said to possess the conjugate-symmetric
property if and only if

(4.9) (i 2 ) =— (& i o).

For a conjugate-symmetric polygenic linear functional (1, w), it is seen
that

(4.10) (@A iu =4 n.

Theorem 4.3. For any polygenic lincar functional (3, p) there corres-
ponds a conjugate-symmetric polygenic linear functional A-u, namely,

(4.11) =5 () G2, i@}

For a conjugate-symmetric polygenic linear functional A-u the corresponding set
of two direct pseudo-conformal fumctionals [4, ul], and [A, ul. are

(A ph=Ap—i(@dp) =24u+iAiu)
(4.12)
[% le=2-p + 4@ A-p) = A-p—1i (Aiu).

For, it is evident that (4.11) obeys the condition (4.9). Also by (4.9) and
(4.10), the relations (4.7) become the relations (4.12).
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Theorem 4.4. If a conjugate-symmetric linear functional A-y s real,
then the corresponding set of two direct pseudo-conformal linear functionals con-
sists of one and only one direct pseudo-conformal linear functional [A, w]. Also

Acpe = %{[2, w2 w]hy Adtp=—( A = ;15; {24, 1] —1[4 u]}
(4.13) N

A pl =2u+i(Aip) = u—i (i Aou).

This is a consequence of Theorem 4.3.
It is remarked that a direct pseudo-conformal linear functional [, x] is
an abstraction of the inner product of a complex inner product space [5].

5. = The pseudo ~ angle 9.

A complex contravariant vector space 7 of veetors A and its dual complex
covariant vector space V* of vectors u, are said to be pseudo-conformal if and
only if there can be associated a definite direct pseudo-conformal linear function-
al [2, u] with the two properties

(5.1) (24 ul =22 4], [4 2p] = 2[4, 4],
for every finite complex number z = 2 + iy. Then if

Aepe=3A[% ] + 4 ul},
it follows that

1 e — . . 1 P
Zp=g{lh Wl +hult,  2ipw=—G1w = 0 —T% 4}

Ayl =2 + 4 (Aip) = A u—i (i Ap).

This is the real conjugate-symmetric linear functional J.- w of a pseudo-conformal
complex contravariant vector space ¥V and of the dual pseudo-conformal com-
plex covariant vector space V*.

If in the complex contravariant vector space V, pseudo-conformal or not,
A 0, is a non-zero contravariant vector, then the set of all contravariant
vectors y = g4, where ¢ == g, + ip,, is a finite complex number, is said to
describe an isocline plane w, .
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If 2540, and »==p A 0, where g 5= 0, is a finite complex number, are
two contravariant vectors in the same isocline plane z,, then the angle 0,
with 0 <0< 2z, for which g =|p]exp (i0) = 0, is called the angle 0 or
the pseudo-angle 6 from the vector A 5= 0 to the vector v == o A 0.

This angle 0 obeys the relation

(5.3) olo = exp(— 2i0), where p 0.

In the pseudo-conformal complex contravariant vector space ¥V and in the
dual pseudo-conformal complex contravariant vector space V¥, a contravar-
iant vector A and a covariant vector u, are said to be #ramsversal if and only
if

1 [
(5.4) A= {[2 p] + 14 pl} =0.

In general, this relation of transversality is nof symmetric. This is an ab-
straction of the transversality in the calculus of variations [17, 18].

If 1 = 0 is a fixed non-zero covariant vector, then the set of all contrav-
ariant vectors A transversal to p is termed the transversal complement of pu.

Similarly, if A ¢ 0 is a given non-zero contravariant vector, then the set
of all covariant vectors u, transversal to 2, is said to be the transversal complem-
ent of A

The transversal complement of a fixed covariant vector u == 0, or of a given
contravariant vector 1 s£ 0, is either a contravariant or covariant complex
vector space of deficiency one, which is a proper subspace of either the contrav-
ariant or covariant vector space 1 or T*

If 2+ 0 is a given contravariant vector, then a non-zero contravariant
vector in the same isocline plane 7, with 2, is of the form v = | g | exp(— i0) 1 0,
where | 9| >0 and 6, with 0 <0< 27, are two real numbers. Of course, §
is the angle from the new vector » s 0, to the given vector 1.

This new contravariant vector » = | g | exp(— i0) A 5« 0, is in the transversal
complement of a given non-zere covariant vector u = 0, if and only if

(5.5) exp(—i 0) [2, ] + exp(i 0) [F, u]=0.

This is so if and only if [4, u]==1 p exp(i 0), where p is a finite real number.
The angle 6, with 0 <8< 27, if it exists, of equation (5.5), is termed the
pseudo-angle 0 from the contravariant vector A == 0, to the covariant vector
u#=0.
Consequently, the following result is obtained:
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Theorem 5.1. In a pseudo-conformal complex contravariant vector space
TV and in its dual pseudo-conformal complex covariant vector space VF, an angle 0,
with 0 <0< 25 is a pseudo-angle 0 from a non-zero contravariant vector 1 to a
non-zero covariant vector u == 0, if end only if

(5.6) [, u] =ipexp(if),
where ¢ is a finite real number. This is equivalent to saying that
(5.7) A u = — p 8ind, A p) =— (i) u = g cosb.

This pseudo-angle 6, is indeterminate if and only if [1, u] = 0. This means
geometrically that the isocline plane =, determined by the contravariant vector
A % 0, is in the transversal complement of the covariant vector p % 0.

If [, u] # 0, this pseudo-angle 6, with 0 < 6 < 2=, is determined uniquely
if and only if o =|[4, p]| >0.

Consider a contravariant vector A £ 0, and a covariant vector u =0, for
which [4, u] 5= 0. The pseudo-angle 6 between them is 7/2 radians, if and only
if either 1 and 4y, or 4 2 and y, are transversal. Also, the pseudo-angle 0 between
A 70, and pu # 0, is equal to the pseudo-angle 0 between ¢ 4 54 0, and ¢ u 5% 0.

6. - Transformation theory of polygenic linear transformations.

Let (A, uy): and (4,, uo), be two polygenic linear functionals, for each of
which the domain is the Cartesian product of the complex contravariant vector
space V and the dual complex covariant vector space V*, and the range is a
non-empty proper or improper subset of the complex number system.

There may exist two contravariant vectors 4, and A, and two covariant
vectors u, and u,, such that

(6-1) (11; ;ul)l = (2-27 ﬂ'z)‘.: .

If 2, corresponds to A, by alinear transformation A, = 7'(4;) on the contrav-
ariant vectors A of the complex contravariant vector space V, then there is
nduced one and only one linear transformation u;, = T'(4,) on the covariant
vectors u of the dual complex covariant vector space V*, such that

(6.2) (Ay T(ped)s = (T(A1)  pro)e

and conversely.
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Two such linear transformations A= T(4,) and = T"(u), are said to be
transposes of one another.

Theorem 6.1. The operation of transposition between the ving of linear
transformations Ay = T'(A;) on the contravariant vectors A of a complex contrav-
ariant vector space V, and the ving of linear transformations py, = T'(u,) on the
covariant vectors u of the dual complex covariant vector space V* is an anti-isom-
orphism. That is, the transpose u; = T'(1,) of 2. = T(2;) possesses the following
two properties (A) and (B):

(A) (T, + T) =T

B) (T, Ty =1, 1,.

The derivation of property (A) is as follows. Since

(}“17 TJ’.(,U':’))1 = (T(;u)y ,“2)2

(6.3)
(A1, T;(,Uz))l = (Ta(4) , M)

then

(6.4) Gy (Ty + T () = (T1 + To)(2), pta)s -

Thus it follows that (Ty + T.) = T, + T,.
Tor the proof of property (B), suppose A, = T1(4,). Then w; = T(u,), With

(6.5) (A1 T;(,Uz))l = (Ty(%), Hs)e -
If 23 = T,(4,), then u, = T;(Ma), where

(6.6) (A s T;(,us))l = (Ty(2:), fta)s -

Since 4, = Ty(d) = Ty To(Ay), it is seen that py= Ti(us)= T, Ta(ps). That is,
(T, 1) =T,T,.

A linear transformation 1, = 7T'(1,), on the contravariant vectors 4 of a
complex contravariant vector space V, is non-singular if and only if it has an
inverse A, = T-1(4,), such that T-* I' = TT-1= 1, the identity.
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Theorem 6.2. A lnear transformation A, = T(A;), on the wectors A
of a complex contravariant vector space V, is non-singular if and only if its tran-
spose ;= T'(u,) on the vectors p of its dual complex covariant vector space V¥,
1§ non-singular.

For, if 4, = I(4,) is the identity on the contravariant vectors 1 of ¥, then
(6.7) (A T'(pa))r = (I(A); pre)e = (4, Hs)s -

Therefore, the transpose I’ of the identity I, is the identity I itself.
Since 1, = T'(%4,) is non-singular, then 727 = T7-! = I. From Theorem
6.1, it follows that

(6.8) IITTY =TT = (1) T

That is, the transpose u, = T"(u.) of the non-singular linear transformation
2y = T(4;), is non-singular.
Similarly, if w, = T'(4,) is non-sigular, then 1, = 7(4,) is non-singular.

7. - The direct pseudo-conformal group G and the total pseudo-conformal
group G*,

The direct pseudo-conformal group G is composed of all non-singular direct
linear pseudo-conformal transformations 7, on the contravariant vectors 2
of a complex contravariant vector space V.

Similarly, the fotal pseudo-conformal group G* consists of all non-singular
direct and reverse pseudo-conformal transformations 7' on the contravariant
vectors 4 of a complex contravariant vector space V.

Neither one of these two groups G and G* is empty, and G is a proper sub-
group of G'*. That is, ¢ 5% G C G*, but G £ G*,

Let us consider the direct pseudo-conformal linear functional [, u] of a
pseudo-conformal complex contravariant vector space V of vectors A, and of
its dual pseudo-conformal complex covariant vector space V* of vectors u.

By a linear transformation A, = T(4,) and its transpose u; = 7'(u,), the
dirvect pseudo-conformal linear functional [4,, p4] corresponds to a polygenic
linear functional [4,, w.]’, mot necessarily either dirvect or reverse pseudo-con-
formal, such that

(7.1) [A4s T'(wa)] = [T(A), p]"
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If T is non-singular, so is its transpose 7". Hence (7.1) can be written as

(7.2) [y 0] = [T(h), (') w)]"

Theorem 7.1. Under a non-singular linear transformation T and under
its non-singular linear transpose T, the direct pseudo-conformal linear functional
[, pa] is converted either into a direct pseudo-conformal linear functional [, , us),
or into a reverse pseudo-conformal linear functional [ 3, | u,], of and only if 2, = T(2y)
and py = T'(u.), are both either divect pseudo-conformal or reverse pseudo-con-
formal.

For, by equation (7.2), it is seen that
[A5 ] = [T(Z), (T) )]
(7.3) [TG 4), pe] =i [T(A), p]
[Zey (T iw)] = —1i[A, (T) )]

£ [Aay po] =[2e, ) =[T(A), T-w,)]" is a direct pseudo-conformal linear
funetional, then it follows that T'(¢ A,)=1¢ T(A,) and (L)1 ) = (T") ().
That is, 2, = T(4;) and u, = T'(u,), are both direct pseudo-conformal.

I (2, pa] =2, pel’ = [T(A), (I')*(u)]" is a rveverse pseudo-conformal
linear functional, then it is deduced that T(id)=—1% T(4,) and (I')"Mi u1)==
= — 1 (T u,), are both reverse pseudo-conformal.

Theorem 7.2. A non-degenerate linear transformation T on the contrav-
ariant vectors A of a complex contraveriant vector space V, is divect or reverse
pseudo-conformal if and only if it carries every two conmtravariant vectors of an
isocline plane 7, into two contravariant vectors of an isocline plame 7, .

For, the requirement of this proposition implies that the two contravariant
vectors A =4 0, and ¢ As= 0, of an isocline plane s, must be carried into two
contravariant vectors 7'(1) and 7'(¢ 2) of an isocline plane m,. Hence

(7.4) T A) =w T,
for some finite non-zero complex number w = u -+ v 5~ 0.

Upon replacing 7 A by —4 4, it is seen that 7'(4 A)=—w'T(1), where w' =
=u' 4+ ' % 0, is some finite non-zero complex number. Hence w = — w’,
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-

so that « = «' =90, and » = v’. Thus (7.4) becomes

—~
-~
(%14

=

T( 2) = v T(A),

where » 5¢ 0 is some finite real number.
If 2,50 and 2, = 0 are two linearly independent vectors, then T(4 A,)=
=40, T(%,) and T A,) = v, T(X). Hence

T 2q 1 Ae) =0y {T(A) + T(2e)} = vy T(4) + dv, T(2) -

Since 7T'(4) 20 and T(4) 0 are linearly independent, it follows that
Vy == Dy = D, .

Consequently the finite real number v £ 0, of (7.5), is independent of the
contravariant vector A.

Therefore
(7.6) PG ) =dv T(4), Ty =—iv T 2) =2 T(A).
That is, »* =1, so that v = +1 or v = —1.

If v ==+ 1, then T(¢ Ay=14T(A), so that T is direct pseudo-conformal.
If v==—1, then T({ A)=—1 T(A), so that T is reverse pseudo-conformal.
The sufficiency of this proposition is evident.

Theorem 7.3. A non-degenerate lineasr iransformation T on the contrav-
ariant vectors A of a complex contravariant vector space V, is dirvect or reverse
psendo-conformal if and only if its non-degenerate linear transpose T' on the cov-
ariant vectors u of its dual complex covariont veclor space V*, is direct or reverse
pseudo-conformal.

For, if 1 0 is a contravariant vector and u = 0 is a ecovariant vector,
then il 540 is orthogonal to u 5% 0 if and only if [4, 1] =[2, u]. Hence for
every finite complex number z = & - iy, 2l is orthogonal to zu since [21, zu] =
= [24, 2u]- This means that the isocline plane s, determined by the contrav-
ariant vector ¢4 # 0, is orthogonal to the isocline plane m, determined by
the covariant vector u.

Since a non-degenerate linear transformation 7' on the contravariant vectors
A of V is direct or reverse pseudo-conformal if and only if it converts every
isocline plane of contravariant vectors into an isocline plane of contravariang
vectors, then its non-degenerate linear transpose 7" on the covariant vectors u
of the dual space V¥, carries every isocline plane of covariant vectorsinto an
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isocline plane of covariant vectors. By the dual of Theorem 7.2, the non-degen-
erate linear transpose 7" is either direct or reverse pseudo-conformal.

Clearly the preceeding argument may he dualized. Hence Theorem 7.5 is
established.

Of course, & non-degenerate linear transformation 7' on the contravariant
vectors A of V, is either direct or reverse pseudo-conformal according as its
linear transpose 7' on the covariant vectors of its dual space V* is either dir-
ect or reverse pseudo-conformal.

Theorem 7.4. A non-degeneraie linear transformation T on the contrav-
ariant vectors 2 of a complex contravariant vector space V, or its mon-degenerate
linear transpose T' on the covariant veclors w of the dual complex covariant vector
space V¥, is either direct or reverse pseudo-conformal if and only if it preserves the
pseudo-angle 0, with 0 <0< 2z, between cvery non-gero contravariant vector
A <= 0 and every non-zero covariant vector p 5= 0. It is direct or reverse according as
the orientation of the pseudo-angle 0, is preserved or reversed.

For, by the method in which the pseudo-angle 0 was constructed, such a
linear map carries every isocline plane of either contravariant or covariant
vectors into an isocline plane of either contravariant or covariant vectors.
Thus such a map is necessarily only direct or reverse pseudo-conformal.

By Theorem 7.3, T and 7" ave both either direct or reverse pseudo-con-
formal.

By Theorem 5.1 and Theorem 7.1, the magnitude of the pseudo-angle 0,
with 0 <0< 27, is preserved under the total pseudo-conformal group G*.
Evidently its orientation is preserved or reversed according as the map is either
direct or reverse pseudo-conformal.
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Summary.

The theory of polygenic functions and that of pseudo-conformal geometry, oviginally

due to Kasner, are estended to a complex wvector space V, and its dual T*, either
finile or infinite dimensional. Polygenic and pseudo-conformal linear transformations are
introduced. The theory of pseudo-conformal functionals is developed. Isocline planes in
the contravariant space V and in the covariant space V* are defined, the pseudo-angle
between weclors in the same isocline plane is defined, and the theory of psewdo-angles 0
between contravariant and covariant vectors is studied. The lransformation theory of
polygenic linear functionals is developed. The pseudo-conformal group G* and the direct
pseudo-conjormal group G are characterized by the pseudo-angle 6.



