D. G. Joshi (*)

On a Theorem of Louis de Branges. (**)

1. - Louis de Branges [1] proved the following theorem for Hankel transform of order ν .

Theorem. A necessary and sufficient condition for the functions g(x), $f(x) \in L_2$ to be the Hankel transforms of one another is that the equation

(1.1)
$$\int_{0}^{\infty} f(t) (xt)^{\nu+(1/2)} e^{-x^{2} t^{2}/2} dt = \int_{0}^{\infty} g(t) (x^{-1} t)^{\nu+(1/2)} e^{-t^{2}/(2x^{2})} x^{-1} dt ,$$

holds for all x > 0, $\nu > -1$, where $x^{\nu + (1/2)} e^{-x^2/2}$ is defined as a fundamental self-reciprocal function for the Hankel transformation of order ν .

In this paper we generalise the above theorem for any transformation, the kernel function of which is a symmetrical FOURIER kernel.

2. - Now we give certain results used in the following sections.

Let $s = \sigma + it$ be a complex variable. Following Titchmarsh ([6], p. 252) the author [4] has established the following result.

A necessary and sufficient condition that a function f(x), $\in A(\alpha, a)$ ([6], p. 252) should be its own k-transform, where k(x), the kernel function of the transform is such that its Mellin transform, K(s) is O(1), $K_1(s)$ is $O(e^{\lambda|t|})$ and $K_1(s)$ satisfies the relation

(2.1)
$$K(s) = K_1(s)/K_1(1-s)$$

^(*) Indirizzo: Department of Mathematics, Holkar Science College, Indore (M.P.), India.

^(**) Ricevuto: 15-X-1968.

is that f(x) should be of the form

(2.2)
$$f(x) = \frac{1}{2 \pi i} \int_{s-s}^{s+i\infty} K_1(s) \ \psi(s) \ x^{-s} \, \mathrm{d}s,$$

with

$$(2.3) \psi(s) = \psi(1-s),$$

where $\psi(s)$ and $K_1(s)$ are regular in the strip

(2.4)
$$a < \sigma < 1 - a, \quad a < 1/2,$$

 $\psi(s)$ is $O(e^{(-\lambda - \alpha + \eta)|t|})$ for every positive η and uniformly in the strip (2.4) and e in any value of σ in the strip (2.4).

In the equation

(2.5)
$$g(x) = \int_{0}^{\infty} f(g) \ k(xy) \ dy$$

we can conclude from L_2 theory following Titchmarsh ([6], p. 221) that g(x), $f(x) \in L_2$ if k(x) is a symmetrical Fourier kernel.

Denoting the Mellin transform of f(x) by F(s), the Parseval relation ([3], p. 391) for Mellin trasform, with parameter x (x > 0) is given by

(2.6)
$$\int_{0}^{\infty} f_{1}(ux) f_{2}(u) du = \frac{1}{2 \pi i} \int_{(1/2)-i\infty}^{(1/2)+i\infty} F_{1}(s) F_{2}(1-s) x^{-s} ds,$$

where $f_1(x)$, $f_2(x) \in L_2$ and $F_1(s)$, $F_2(s) \in L_2(\frac{1}{2} - i \infty, \frac{1}{2} + i \infty)$.

We now extend the definition of fundamental self-reciprocal function for the Hankel transform of order ν to k-transform.

If in (2.2) $\psi(s) = 1$, we have

(2.7)
$$f(x) = k_f(x) = \frac{1}{2 \pi i} \int_{-\infty}^{c+i\infty} K_1(s) x^{-s} ds,$$

then $k_{f}(x)$ is called the fundamental self-reciprocal function for the k-transform.

3. – Theorem. A necessary and sufficient condition for the functions g(x), $f(x) \in A(\alpha, a)$ and L_2 , $K(s) \in L_2(\frac{1}{2} - i\infty, \frac{1}{2} + i\infty)$, and $K_1(s)$ satisfies (2.1) and $\in L_2(\frac{1}{2} - i\infty, \frac{1}{2} + i\infty)$ to be the k-transform of one another is that the equation

(3.1)
$$\int_{0}^{\infty} f(t) k_{f}(xt) dt = \int_{0}^{\infty} g(t) k_{f}(t/x) \frac{dt}{x}$$

holds good for all x > 0, where $k_f(x)$ is the fundamental self-reciprocal function for the k-transform.

Proof. Condition is necessary. We have

(3.2)
$$g(x) = \int_{0}^{\infty} f(y) \ k(xy) \ dy.$$

As $f(y) \in L_2$ and $K(s) \in L_2(\frac{1}{2} - i\infty, \frac{1}{2} + i\infty)$ we can use Parseval relation (2.6) on the R.H.S. of (3.2) thus we have

(3.3)
$$g(x) = \frac{1}{2\pi i} \int_{(1/2)-i\infty}^{(1/2)+i\infty} K(s) F(1-s) x^{-s} ds, \qquad x > 0.$$

As $g(x) \in L_2$ the Mellin transform of g(x) exists and (3.3) reduces to

$$(3.4) G(s) = F(1-s) K(s),$$

using (2.1) in (3.4) we have

$$(3.5) G(s) K_1(1-s) = F(1-s) K_1(s).$$

As $K_1(s) \in L_2(\frac{1}{2} - i\infty, \frac{1}{2} + i\infty)$ so taking the inverse Mellin transform of both sides of (3.5), we have

$$\frac{1}{2\pi i} \int\limits_{(1/2)-i\infty}^{(1/2)+i\infty} G(s) \ K_1(1-s) \ x^{-s} \ \mathrm{d}s = \frac{1}{2\pi i} \int\limits_{(1/2)-i\infty}^{(1/2)+i\infty} K_1(s) \ F(1-s) \ x^{-s} \ \mathrm{d}s \ .$$

Using the Parseval relation (2.6) and (2.7), we get

(3.6)
$$\int_{0}^{\infty} g(xu) k_{f}(u) du = \int_{0}^{\infty} k_{f}(tx) f(t) dt.$$

Replacing xu by t in left hand side of (3.6), we have

(3.7)
$$\int_{0}^{\infty} g(t) \ k_{f}(t/x) \ x^{-1} \ dt = \int_{0}^{\infty} f(t) \ k_{f}(xt) \ dt.$$

Condition is sufficient. Retracing the steps from (3.7) to (3.2) it can be shown that g(x) is the k-transform of f(x). To show that f(x) is the k-transform of g(x) we retrace steps from (3.7) to (3.4), replace s by 1-s to obtain

(3.8)
$$G(1-s) K_1(s) = F(s) K_1(1-s).$$

Moving on similar lines from (3.4) to (3.2), we get

$$f(x) = \int_{0}^{\infty} g(y) \ k(xy) \ \mathrm{d}y$$

instead of (3.2). This concludes sufficiency.

4. - By selecting different kernel functions we get relations for different transforms. We mention few cases,

Corollary 1. If

$$k(x) = x^{1/2} J_{\nu}(x), \qquad \nu > -1,$$

then

$$egin{align} K(s) &= 2^{s-(1/2)} \, arGammaigg(rac{1}{4} + rac{v}{2} + rac{s}{2}igg) \, igg/ \, arGammaigg(rac{3}{4} + rac{v}{2} - rac{s}{2}igg) \, , \ & K_1(s) \, = 2^{s/2} \, arGammaigg(rac{1}{4} + rac{v}{2} + rac{s}{2}igg) \, . \end{split}$$

giving fundamental self-reciprocal function $x^{\nu+(1/2)}e^{-x^2/2}$.

Using the theorem, equation (3.1) reduces to (1.1) which is a known result.

Corollary 2. If $k(x) = \omega_{\mu,\nu}(x)$ $(\mu > -1, \nu > -1)$ the kernel introduced by Watson [7], then

$$K_1(s) = 2^s \ arGamma\left(rac{1}{4} + rac{v}{2} + rac{s}{2}
ight) \ arGamma\left(rac{1}{4} + rac{\mu}{2} + rac{s}{2}
ight),$$

and the fundamental self-reciprocal function for Watson transform is

$$2 G_{0,2}^{2,0} \left(\frac{x^2}{4} \middle| \frac{1}{2} + \frac{\mu}{2}, \frac{1}{4} + \frac{\nu}{2} \right).$$

Using the result ([2], p. 434) this becomes

$$2^{(3-\mu-\nu)/2} x^{(\mu+\nu+1)/2} K_{(\mu-\nu)/2}(x)$$

where $K_{\alpha}(x)$ denotes the modified Bessel function of order α . Using the theorem, the equation (3.1) assumes the form

$$(4.1) \quad \int\limits_0^\infty g(t) \ (tx^{-1})^{(\mu+\nu+1)/2} \ K_{\,(\mu-\nu)/2}(tx^{-1}) \ x^{-1} \ \mathrm{d}t = \int\limits_0^\infty f(t) \ (xt)^{(\mu+\nu+1)/2} \ K_{\,(\mu-\nu)/2}(xt) \ \mathrm{d}t \ .$$

Corollary 3. If $k(x) = \chi_{\nu,k,m}(x)$ the kernel function studied by R: N ar a in ([5], p. 271), then

(4.2)
$$K_1(s) = \frac{2^{s/2} \Gamma\left(\frac{1}{4} + \frac{\nu}{2} + \frac{s}{2}\right) \Gamma\left(\frac{1}{4} + \frac{\nu}{2} + 2m + \frac{s}{2}\right)}{\Gamma\left(\frac{3}{4} + \frac{\nu}{2} + m - k + \frac{s}{2}\right)},$$

$$\operatorname{Re} s \geqslant s_0 > 0 \; , \qquad \qquad \operatorname{Re} \; (\nu \; + 1 \; + 2m \; \pm \; 2m) > 0 \; ,$$

2m not an integer and the fundamental self-reciprocal function for $\chi_{\nu,k,m}$ -transform is given by

$$G_{1,2}^{2}\left(\frac{x^{2}}{2}\left|\frac{\frac{3}{4}+\frac{\nu}{2}+m-k}{\frac{1}{4}+\frac{\nu}{2},\frac{1}{4}+\frac{\nu}{2}+2m}\right)\right), \qquad \text{Re}\left(\nu+1+2m\pm2m\right)>0.$$

Applying the theorem, the equation (3.1) becomes

(4.3)
$$\int_{0}^{\infty} f(t) G_{1,2}^{2,0} \left(\frac{t^{2} x^{2}}{2} \left| \frac{\frac{3}{4} + \frac{\nu}{2} + m - k}{\frac{1}{4} + \frac{\nu}{2}, \frac{1}{4} + \frac{\nu}{2} + 2m} \right) dt =$$

$$= \int_{0}^{\infty} g(t) G_{1,2}^{2,0} \left(\frac{t^{2}}{2 x^{2}} \left| \frac{\frac{3}{4} + \frac{\nu}{2} + m - k}{\frac{1}{4} + \frac{\nu}{2}, \frac{1}{4} + \frac{\nu}{2} + 2m} \right) x^{-1} dt.$$

My thanks are due to Dr. V. M. Bhise (Shri G. S. Technological Institute, Indore) for his help and guidance during the preparation of this paper. I am also thankful to Dr. S. M. Das Gupta (Principal, G. S. Technological Institute) for the facilities he gave me.

References.

- [1] L. de Branges, Self-reciprocal functions, J. Math. Anal. Appl. 9 (1964), 433-457.
- [2] A. Erdelyi et al., Tables of Integral Transforms, Vol. 2, McGraw-Hill, New York 1964.
- [3] C. Fox, A formal solution of certain dual integral equations, Trans. Amer. Math. Soc. 119 (1965), 389-398.
- [4] D. G. Joshi, On self-reciprocal functions, Proc. Nat. Acad. Sci. India 38 A (1968), 193-202.
- [5] R. NARAIN, On a generalization of Hankel transform and self-reciprocal functions, Univ. e Politec. Torino, Rend. Sem. Mat. 16 (1956-57), 269-300.
- [6] E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Claredon Press, Oxford 1937.
- [7] G. N. Watson, Some self-reciprocal functions, Quart. J. Math. Oxford 2 (1931), 298-309.

Abstract.

In this paper we have generalised the theorem of Hankel transform given by Louis de Branges.

* * *