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Summability of Fourier Series

by Karamata Method. (**)

1. — Let f(t) be a periodic function with period 2, and integrable in the
sense of LEBESGUE over (— m, @). Let its FOURIER series be given by

+ > (a, cosnt -+ b, sinng).

n=1

1.1)

Nl!-‘

We write
() = fle +t) + fl#—t)— 2 f(z).

We define the numbers [n] by
v
(1.1 a(@+1) (@ +2) .. @ +n—1) = ¥ H o

n

where » =0, 1, 2, ...; 0 <v» < n, and the numbers [ ] are absolute values of
P

StirLING numbers of first kind.

Definition. The series Y a, , with the sequence of partial sum {8},
is said to be summable by KARAMATA method-K* A >0, if the sequence

‘ 2] T z -
(1.2) S {Hw ;H/ q}

converges.

(*) Indirizzo: Department of Mathematics, University of Saugar, Sagar (M. P.),
India.
(**) Ricevuto: 12-111-1968.
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The methods-K* were introduced by Karamara [4], who has shown that
the methods are regular for 2 > 0. AanEw [1] applied these methods to FOURIER
series and pointed out that even X! method is not FouriERr effective for con-
tinuous functions. For the first time in 1965, VLADATA-VUCKOVIC [7] has prov-
ed a positive result concerning the Fourier effectiveness of these methods
by proving:

Theorem. If

(1.3) (1) = o(1/log(1/t)),

as t — -+ 0, then the FOURIER series (1.1) is K*summable at the point « to
the sum f(z), for every 4 > 0.

HarpY [2] and IYENGAR [8] have proved that the condition (1.3) implies
BoreL and harmonic summabilities, respectively. So the preceding theorem
shows that the K* methods behave essentially as Borsr and harmonic methods
regarding their FOURIER effectiveness. SAHNEY [5] and SippIgr [6] have gener-
alised the results of HARDY [2] and IYENGAR [38], respectively. An analogous
generalisation for K*method is therefore expected. With this point of view
we prove the following

Theorem. If

(1.4) D(t) = f [p(u) | du = o(tflog(1/t)),

as t — + 0, then the Fourier series (1.1) is K*summable at the point
to the sum f(x), for every A > 0.

2. — We need the following lemma to prove our theorem.
Lemma [7]. For A >0 and 0 <t<C7x/2, we have

[Im I'(Ze* +n)|  |sin(Lsint logn) |

(2 cost + m) - sin(t /2) sin(t/2) +0d)

uniformly in ¢, where Im denotes the imaginary part.
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3. = Proof of the Theorem.

Let S,(z) denote the »-th partial sum of the IFourIER series (1.1). We have

sin(v-- (1/2))¢
sin (¢/2)

S0)— 1) =5 | pl0)

0

dt +o(1).

Let S*w) denote the transform (1.2) of {S,()}. Then following VLADATA-
VUCKOVIC [7], we have

§ia)— fl@) ={T (D)2} [t Ko 1) at,

where

=0

K (1) :{ 3 m »” sin(v+(1/2))t} [ {2 4 n)sin(2)}.

By (1.17)

Im {eit/2 I(Lett-tn)[I'(1e)}

K,(t) = I'(i + ») sin(t/2) ’

where Im denotes the imaginary part.
Let 6 be a positive number such that

1—cost>(1/3) for 0 <t< 4,

and 4 denote a constant independent of # and ¢ and not necessarily the same
at each occurance.
For d<<t<<m, @) is bounded and

| K.0) | <4 n“"“" B sin (6/2) .

Hence

4

/(p(i) E.(t) dt’ <4
3

I
27

p A= cosd)

——sin(672T = o(1) s as n—>o00.
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Therefore

]
| Spl@)—f@) | <A [| @) K@) ] dt + o(1).

As

| Tm {eit/2 I'(Z "+ )/ (2 e*)} | < A Im I'(Zett -+ n) |
sin(t/2) = sin(t/2)

+ A|Re I'(Aeit +mn)|,

where Re means the real part, we obtain

A {P(A cost -+ n}/I'(4 + o:.)} | Im I'(Ze®t + n) | L4 (2 cost -+ »n)
T'(2 cost 4 n) sin(t/2) ’ T +4+an)

| (1) | <

and, for 0 <Ct<Cd,

(7 cost -+ n)

— <A n—l(l—- cosl)____,A 6-—7.(1—cost)logn
(L 4 n)

< Ae—(l/a) At? logn

and so

[
[1o@ Ka) | ar <

5

l (p(t) l i y —A(1— cos#ylogn

Af i) [ Im {I'(4 ¢7 + n)/I'(A cost +n)}| e e dt
]

é
+ A J’ I (P(t) ! 0—(1/3) t* logn dt,
o

the second integral on the right is O(1/4/log #); so o(1) as n — co.
Finally, from the lemma (cf. n. 2), we obtain

| S3(@)— f(2) | <

/]

" @) | |sin(4 sint logn) | —12 (3— cosplogn

< A/ sin (¢/2) ¢ dt + o(1)
0

G.1)

as n —>oco.

exp{A (1 — cost) logn}

8
_ 0(1)f | (p(:) | |sin(Z sint logn) | a - o)
L (1]
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Thus in order to prove the Theorem it remains to show that the integral on
the right of (3.1) is o(1) as n — co. We set

6
Lo(t) | | sin(2 sint logn) | .
t  exp{i(l — cost) logn} -

1/logn 1/dogny®* 8

z{ of N T }:Kl—;_]fgirlfa

1{logn 1/dlog ny®

say, where 0 <Coa<C1/2.
From the hypothesis (1.4), we have

1/logn 1/logn

i
K, = f lw(;h - O(2 tlogn) dt = O( logn) Jf [ p(t) | dt =
0 (1]
= 0(2 logn)[o(t/log(1/8)) 13" = o(1) , as % > oo.

Next, by the second mean value theorem and the hypothesis (1.4) we have, for
0<<a<a <<1/2,

1/(log m)®
T — L) | | sin(2 sint logn) |

- t  exp{l (Il — cost) logn}
1/(log n)

1/og m> 1/dog m*'
1 o | [o®) |
exp{Z logn - 2 sin(1/(2 log n))} ? o) d 0l
1flogn 1flog n

ds

1/tlog m?

:0(1)[0( ! ﬂ”“"g"’“' +0(1)/ (—-1—>dt

0
log(1/t) {110 t log(1/t)

l/lcén

1/dog m®

= o( ! ) -+ o[log log(l/t)]

log log n 1flog

=0(1) + o(log ') = o(1), as n —> oo,

Lastly, applying the second mean value theorem and by the continuity
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part of the integral f @) | dt, we have, for 1/(logn)* < &' < 6,

s
X - " o) | | sin(Z sint logn) |
P t  exp{i(l— cost)logn}
1/(log m%*

5
(log )= . o
~ exp{2logn-2 sin[1/(2(logn)* )]} f ety | O(1) as

1/tlog my*

(log n)> .
T e —— == 1 <« D v S 2-
oxp (log )=t O(1) = o(1) as » — oo, since 0 <o <1/

This completes the proof of the Theorem.

I am much indebted to Professor P. L. Smarma for his guidance and en-
couragement during the preparation of this paper.
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