K. L. SINGH (*)

On Some Fixed Point Theorems. (**)

1.1. – A mapping T of a metric space X into itself is said to satisfy Lipschitz condition with Lipschitz constant α if

$$d(T(p), T(q)) \leqslant \alpha d(p, q)$$
 $(p, q \in X).$

If this condition is satisfied with a Lipschitz constant α such that $0 \le \alpha < 1$, then T is called a contraction mapping. A well known theorem of Banach states that:

If X is a complete metric space and T is a contraction mapping of X into itself, then there exists a unique point $\xi \in X$ such that $T(\xi) = \xi$.

1.2. – A mapping $T: X \to X$ of a metric space X into itself is said to be non expansive (ε -non expansive) if the condition

$$d(T(p), T(q)) \leqslant d(p, q)$$

holds for all $p, q \in X$, $p \neq q$ (for all p, q with $d(p, q) < \varepsilon$). If we have strict inequality sign for all $p, q \in X$, $p \neq q$ (for all $p, q \in X$ such that $0 < d(p, q) < \varepsilon$). Then T is said «to be contractive (or ε -contractive) ».

Remark. The assumption d(T(x), T(y)) < d(x, y) is not sufficient for the existence of a fixed point even on a complete metric space.

For example, let X be the set of real numbers with the usual metric. Define $T(x) = x + \pi/2$ — arctan x.

^(*) Indirizzo: Memorial University of Newfoundland, St. John's, Newfoundland, Canada.

^(**) Ricevuto: 3-VII-1968.

Since $\arctan x < \pi/2$ for every x, the operator T has no fixed point. At the same time if x < y, then

$$T(y) - T(x) = y - x - (\arctan y - \arctan x)$$
,

and by LANGRANGE's formula

$$T(y) - T(x) = y - x - \frac{y - x}{1 + z^2}$$
 $(x < z < y)$.

If we had

$$|T(y)-T(x)|\geqslant |y-x|,$$

then this would mean that

$$\left|1-\frac{1}{1+z^2}\right|\geqslant 1\,,$$

but this inequality is not satisfied for any z and therefore we always have

$$|T(y)-T(x)|<|y-x|$$
.

- **1.3.** A point $y \in Y \subset X$ is said to belong to the f-closure of Y, $y \in Y^{f}$, if $f(Y) \subset Y$ and there exists an $\eta \in Y$ and a sequence $\{n_{i}\}$ of positive integers $(n_{1} < n_{2} < \ldots < n_{i} < \ldots)$ so that $f^{n_{i}}(\eta) = Y$.
- 1.4. A sequence $\{x_i\}\subset X$ is said to be an isometric (ε -isometric) sequence if the condition

$$d(x_m, x_n) = d(x_{m+k}, x_{n+k})$$

holds for all k, m, n=1, 2, ... with $d(x_m, x_n) < \varepsilon$. A point $x \in X$ is said to generate an isometric (ε -isometric) sequence under f if $\{f^n(x)\}$ is such a sequence.

2. — Theorem. Let f and g be two commuting functions defined on a compact metric space X, then f and g have a common fixed point, provided that f satisfies the following properties:

(i)
$$d(f(x), f(y)) \leqslant d(x, y),$$

(ii) if
$$x \neq f(x)$$
 then $d(f(x), f^2(x)) < d(x, f(x))$.

Proof. The condition (i) implies that the sequence $\{d(f^n(x), f^{n+1}(x))\}$ is non increasing. Since the space is compact therefore the sequence will converge to a limit point, hence there exists a point y such that $y = \lim_{k} f^{n_k}(x)$. By (i) it is clear that f is continuous therefore $d(y, f(y)) = \lim_{k} d(f^{n_k}(x), f^{n_k+1}(x)) = \lim_{k} d(f^n(x), f^{n+1}(x)) = \lim_{k} d(f^{n_k}(x), f^{n_k+1}(x)) = \lim_{k} d(f^{n_k}(x), f^{n_k+1}(x)) = d(f(y), f^{n_k}(x))$. Contradiction

3.1. - In [3] WARD CHENEY and ALLEN A. GOLDSTEIN have proved the following theorem:

« Let f be a map of a metric space X into itself such that:

to condition (ii) unless f(y) = y. Thus y is a fixed point for f.

- (i) $d(f(x), f(y)) \leq d(x, y),$
- (ii) if $x \neq f(x)$, then $d(f(x), f^2(x)) < d(x, f(x))$,
- (iii) for each x, the sequence $f^n(x)$ has a cluster point.

Then for each x the sequence $f^n(x)$ converges to a fixed point of f.

Here we would like to remark that by relaxing conditions (ii) and (iii) we get a unique fixed point. Although the theorem has already been given by MICHAEL EDELSTEIN [6]. We prefer the direct rather simple proof here.

 $3.2.-{
m Theorem}$. Let f be a map of a compact metric space X into itself such that

(i)
$$d(f(x), f(y)) \leqslant dx(, y)$$

(equality sign occurs only when x = y). Then f has a unique fixed point.

Proof. The compactness of X and the condition (i) imply that each $x \in X^f$ generates an isometric sequence, EDELSTEIN ([7], theorem 1'). Therefore by the definition of isometric sequence $d(x, f(x)) = d(f(x), f^2(x))$ but from the condition (i) we have $d(f(x), f^2(x)) \leq d(x, f(x))$.

This shows that d(x, f(x)) = 0 and which implies x = f(x), i.e. x is a fixed point for f. To prove the uniqueness, let us assume that y is another point such that $y \neq x$ and f(y) = y. Then d(f(x), f(y)) = d(x, y) contradicting condition (i) unless x = y. Thus x is a unique fixed point for f.

4. – Theorem. Let T and K be two functions defined from a non-empty set X into itself such that K possesses a left inverse (i.e. a function K^{-1} such that $K^{-1}K = I$, where I is the identity mapping of X). Then the function T has a fixed point if and only if KTK^{-1} has a fixed point. (A similar result for right inverse has been given by Chu and Diaz [4].)

Proof. Suppose that x is a fixed point for T, then Tx = x which implies $T(K^{-1}K)x = x$, or $KT(K^{-1}K)x = Kx$, or $(KTK^{-1})(Kx) = Kx$; i.e., Kx is a fixed point for KTK^{-1} .

Conversely, let us assume that y is a fixed point for KTK^{-1} . Then

$$KTK^{-1}y = y$$
 or $K^{-1}KTK^{-1}y = K^{-1}y$ or $TK^{-1}y = K^{-1}y$,

i.e. $K^{-1}y$ is a fixed point for T.

5.1. — A mapping f of X into itself is said to be locally contractive if for every $x \in X$ there exists ε and λ ($\varepsilon < 0$, $0 \le \lambda < 1$) which may depend on x such that p, $q \in S(x, \varepsilon) = \{y \mid d(x, y) < \varepsilon\}$ implies

$$d(f(p), f(q)) < \lambda d(p, q),$$
 $p, q \in X, p \neq q.$

5.2. – A mapping f of X into itself is said to be (ε, λ) uniformly locally contractive if it is locally contractive and both ε and λ do not depend on x.

Remark. A globally contractive mapping can be regarded as (∞, λ) uniformly locally contractive mapping.

5.3. — A continuous mapping is eventually contractive if 0 < d(x, y) implies $\exists n(x, y) \in I^+$ (the positive integers) $\ni d(f^n(x), f^n(y)) < d(x, y)$), and it is ε -eventually contractive if f is continuous and

$$\exists \epsilon > 0 \text{ such that } 0 < d(x, y) < \epsilon$$

implies

$$\exists n(x,y) \in I^+ \text{ such that } d(f^n(x), f^n(y)) < d(x, y).$$

- 5.4. A metric space X is said to be convex provided x and y in X implies there exists z in X such that d(x, z) = d(z, y) = (1/2) d(x, y).
- 5.5. A metric space X is said to be ε -chainable or well linked if for every pair (a, b) of points of X and for every $\varepsilon > 0$ there exists a ε -chain of finite sequence of points, of X, with $a = a_1, ..., a_n = b$, such that $d(a_i, a_{i+1}) \leqslant \varepsilon$ for every i < n. In other words, a and b can be joined by a chain of steps at most equal to ε .
- 6. Theorem. Let X be a convex, compact ε -chainable metric space, and f a mapping of X into itself which is (ε, λ) uniformly locally contractive, then f is also eventually contractive.

Proof. A theorem by MENGER ([2], p. 41) states that a convex and complete metric space contains together with a, b also a metric segment whose extremeties are a and b, that is a subset isometric to an interval of length d(a, b).

Using this fact we see that if $p, q \in X$ then there are points $p = x_1, x_2, ..., x_n = q$ such that $d(p, q) = \sum_{i=1}^n d(x_{i-1}, x_i)$ and $d(x_{i-1}, x_i) < \varepsilon$. Hence

$$d(f(p), f(q)) \leq \sum_{i=1}^{n} d(f(x_{i-1}), f(x_i)) < \lambda \sum_{i=1}^{n} d(x_{i-1}, x_i) = \lambda d(p, q).$$

By definition it is clear that $d(f(p), f(q)) < \lambda d(p, q)$ implies $0 < d(p, q) < \varepsilon$ $\implies d(f(p), f(q)) < d(p, q)$. Also, by definition every contractive mapping in the convex complete metric space may be regarded as ε -contractive mapping.

Now X is ε -chainable, therefore for distinct points p and q there exists $p = p_1$, p_2 , ..., $p_n = q$ such that $d(p_i, p_{i+1}) < \varepsilon$ for i = 0, 1, ..., n-1. By Corollary 1 to theorem 2 [1], p_i is asymptotic to p_{i+1} under f for i = 0, 1, ..., n-1. Hence there exists m in I^+ such that

$$d\big(f^{m}(p_{i}),\;f^{m}(p_{i+1})\big) < d(p,\;q)/n \qquad \ (i=0,\;1,\;...,\;n-1)\;.$$

Therefore

$$d(f^m(p), f^m(q)) \leq \sum_{i=0}^{n-1} d(f^m(p_i), f^m(p_{i+1})) < n d(p, q)/n = d(p, q).$$

7.1. – x is proximal to y under f provided for each $\alpha > 0$ there exists n a member of I^+ such that $d(f^n(x), f^n(y)) < \alpha$. If x and y are not proximal under

f they are said to be distal under f. If for each $\alpha > 0$ there exists n in I^+ such that $d(f^m(x), f^m(y)) < \alpha$ for all $m \ge n$, then x and y are said to be asymptotic under f. Note that we do not require $x \ne y$.

The following result has been proved by BAILEY [1].

Let X be a compact metric space and f be an ε -contractive mapping, i.e.

$$0 < d(x, y) < \varepsilon \implies d(f(x), f(y)) < d(x, y)$$
.

Then $d(x, y) < \varepsilon$ implies x and y are asymptotic under f.

7.2. - We prove the following

Theorem. Let X be a compact ε -chainable metric space and f be ε -contractive mapping, i.e.

$$0 < d(x, y) < \varepsilon \implies d(f(x), f(y)) < d(x, y)$$
.

Then every pair of points is aymptotic under f.

Proof. Since X is ε -chainable we define, for $p, q \in X$,

$$d(p, q) = \inf_{c(p,q)} \sum_{i=1}^{n} d(x_{i-1}, x_i),$$

where C(p, q) denotes the collection of all ε -chains $p = x_0, x_1, ..., x_n = q$ [n arbitrary, $d(x_i, x_{i+1}) < \varepsilon$], holds. Indeed since f is ε -contractive we have

$$d\big(f(x_{i-1}),\ f(x_i)\big) < d(x_{i-1}\ ,\ x_i) \qquad \text{provided} \quad d(x_{i-1}\ ,\ x_i) < \varepsilon \ .$$

Hence

$$d(f(p), f(q)) < \inf_{\sigma(p,q)} \sum_{i=1}^{n} d(f(x_{i-1}), f(x_{i}))$$

$$< \inf_{\sigma(p,q)} \sum_{i=1}^{n} d(x_{i-1}, x_{i}) = d(p, q),$$

for all p, q. Thus the mapping is contractive.

Now since X is compact and f is contractive mapping of X into itself and therefore, by Theorem 3.2, f contains a unique fixed point x, also the property compactness implies that each sequence $\{f^n(x)\}$ converges to x, therefore it follows that every pair of points is asymptotic under f.

8.1. - Following Luxemburg ([9], p. 541), the concept of a «generalized complete metric space» may be introduced in this quotation:

« Let X be an abstract set the elements of which are denoted by x, y, ... and assume that on the cartesian product a distance function d(x, y) [$0 < d(x, y) < \infty$] is defined satisfaving the following conditions:

- (D₁) d(x, y) = 0 if and only if x = y.
- (D₂) d(x, y) = d(y, x) (symmetry).
- (D₃) $d(x, y) \leq d(x, z) + d(z, y)$ (triangle inequality).
- (D₄) Every d-Cauchy sequence in X is d-convergent, i.e. $\lim_{n,m\to\infty} d(x_n, x_m) = 0$

for a sequence $x_n \in X$ (n = 1, 2, ...) implies the existence of an element $x \in X$ with $\lim d(x, x_n) = 0$ [x is unique by (D_1) and (D_3)].

This concept differs from the usual concept of a complete metric space by the fact that not every two points in X have necessarily a finite distance. One might call such a space a generalized metric space.

- **8.2.** Denote by F the family of functions $\alpha(x, y)$ satisfying the following conditions:
- (i) $\alpha(x, y) = \alpha(d(x, y))$, i.e. α is dependent on the distance between x and y only.
 - (ii) $0 \le \alpha(d) < 1$ for every d > 0.
 - (iii) $\alpha(d)$ is monotonically decreasing function of d.

In his paper A. F. Monna [10] proved the following theorem:

"Let (X, d) be a complete generalized metric space. Let T_i (i = 1, 2, ...) be a sequence of mappings of X into itself satisfying the following conditions:

There exists c and α $(c > 0, 0 < \alpha(d) < 1)$ so that $d(T_i, T_i) \leq \alpha(x, y) d(x, y)$

There exists c and α $(c > 0, 0 < \alpha(d) < 1)$ so that $d(T_{ix}, T_{iy}) \leq \alpha(x, y) d(x, y)$ (i = 1, 2, ...) whenever $d(x, y) \leq c$.

If $x_0 \in X$ then a positive integer N(x) exists such that $n \leq N(x)$ implies

$$d(T_{n+k}(x_n), x_n) \leq c$$
 $(k = 1, 2, ...).$

Then the sequence of $\{x_n\}$, where $x_n = T_n x_{n-1}$ (n = 1, 2, ...), converges and, if $y_0 = \lim_{n \to \infty} x_n$, $\lim_{k \to \infty} (T_k y_0) = y_0$. $\mathbb{E}[X_n] = \mathbb{E}[X_n x_n]$ [Here we have replaced α of given paper by $\alpha(x, y)$.]

9.1. - Here we prove that the assumption of Monna's theorem imply even more stronger conclusion.

Theorem. Let all assumptions of above theorem hold. Then a point y exists with the property that $T_{n+k}(y) = y$ (k = 1, 2, ...).

In the proof of the above theorem we will use the following theorem and the proof of which is entirely analogous to that of the theorem 5.2. of [12] is omitted.

9.2. – If T is contraction mapping of a complete ε -chainable metric space X into itself satisfying

$$0 < d(x, y) < \varepsilon \implies d(T(x), T(y)) \leqslant \alpha(x, y) d(x, y),$$

for every $x, y \in X$, and $\alpha(x, y) \in F$; then T has a unique fixed point.

Proof of Theorem in 9.1. Consider an arbitrary fixed $x_0 \in X$; let $n \ge N(x_0)$ be fixed also. Let Y be the set of all $y \in X$ with the property that a sequence $C(y, x_n) \subset X$ exists, where $C(y, x_n) = \{y = p_0, p_1, p_2, ..., p_i = x_n\}$ with $d(p_i, p_{i-1}) \le C$ (i = 1, 2, ..., l). Obviously Y is closed metric subspace of X, also $T_{n+k}(Y) \subset Y$. Thus Y and T_{n+k} (k = 1, 2, ...) satisfy the assumptions of Theorem in 9.1. Therefore it follows that for each k, a unique ξ_k exists so that $T_{n+k} \xi_k = \xi_k$. To prove the theorem only we have to show that $\xi_1 = \xi_2 = ... = \xi_k = (y)$.

Consider $T_{n+k}(T_{n+l}\,\xi_k) = T_{n+l}(T_{n+k}\,\xi_k) = T_{n+l}\,\xi_k$. Thus $T_{n+l}\,\xi_k$ is a fixed point under T_{n+k} . But T_{n+k} has a unique fixed point ξ_k . Therefore $T_{n+l}\,\xi_k = \xi_k$. Then ξ_k is a fixed point under T_{n+l} . Therefore by the uniqueness of ξ_k , $\xi_k = \xi_l$. Hence the theorem.

References.

- [1] D. F. Bailey, Some theorems on contractive mappings, J. London Math. Soc. 41 (1966), 101-106.
- [2] LEONARD M. BLUMENTHAL, Theory and Applications of Distance Geometry, Claredon Press, Oxford 1953.
- [3] W. CHENEY and A. A. GOLDSTEIN, Proximity maps for convex sets, Proc. Amer. Math. Soc. 10 (1959), 448-450.
- [4] C. CHU SHERWOOD and J. B. DIAZ, A fixed point theorem for r in the large application of the contraction principle, Atti Accad. Sci. Torino 99 (1964-65), 351-363.

- [5] M. EDELSTEIN, An extension of Banach's contraction principle, Proc. Amer. Math. Soc. 12 (1961), 7-10.
- [6] M. EDELSTEIN, On fixed and periodic points under contractive mappings, J. London Math. Soc. 37 (1962), 74-79.
- [7] M. Edelstein, On non expansive mappings, Proc. Amer. Math. Soc. 15 (1964), 689-695.
- [8] M. EDELSTEIN, A remark on a theorem of A. F. Monna, Indag. Math. 26 (1964), 88-89.
- [9] W. A. J. Luxemburg, On the convergence of successive approximations in the theory of ordinary differential equations (II), Indag. Math. 20 (1958), 540-546.
- [10] A. F. Monna, Sur un théorème de M. Luxemburg concernant les points fixes d'une classe d'applications d'un espace métrique dans lui même, Indag. Math. 23 (1961), 89-96.
- [11] E. RAKOTCH, A Note on contractive mappings, Proc. Amer. Math. Soc. 13 (1962), 459-465.
- [12] K. L. Singh, Contraction mappings and fixed point theorems, Ann. Soc. Sci. Bruxelles 83 (1968), 33-44.

* * *

