Riv. Mat. Univ, Parma (2) 10 (1969), 13-21

K. L. Sixeu (®

On Some Fixed Point Theorems. (*%)

1.1. - A mapping T of a metric space X into itself is said to satisfy
LipscHrtz condition with LrpscHITz constant o if

a(Tp), T(Q) <« d(p, g (p, e X).

If this condition is satisfied with a LipscHiTz constant « such that 0 <1,
then 7 is called a contraction mapping. A well known theorem of BANACH
states that:

If X is a complete metric space and 7' is a contraction mapping of X into
itself, then there exists a unique point £ € X such that 7'(&) = &.

1.2. — A mapping T: X — X of a metric space X into itself is said to be
non expansive (e-non expansive) if the condition

AqT(p), T(9) <dp, 9

holds for all p, qe X, p 5= ¢ (for all p, ¢ with d(p, ¢) < &). If we have strict
inequality sign for all p, g€ X, p 5= ¢ (for all p, ¢ € X such that 0 < d(p, ¢) < €).
Then T is said «to be contractive (or e-contractive) ».

Remark. The assumption d(7(z), T(y)) < d(x, y) is not sufficient for
the existence of a fixed point even on a complete metric space.

For example, let X be the set of real numbers with the usual metric. Define
T(x) = & - /2 — arctan a.

(*) Indirizzo: Memorial University of Newfoundland, 8t. John’s, Newfoundland,
Canada.
(**) Ricevuto: 3-VII-1968.
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Since arctan # < /2 for every x, the operator 7' has no fixed point. At the
same time if z <y, then

Iy)— T'(®) = y— a— (avctan y — arctan z) ,
and by LANGRANGE’S formula

—
Y 5 (z<<ez<y).

IW)— T(@) =y—a— e

If we had
| T()— T(x) | > |y— =],

then this would mean that

1
’1_1 >1,

- &

2

but this inequality is not satisfied for any 2z and therefore we always have

[ T(y)— T(@) | <|y—a].

1.3. — A point y € Y ¢ X is said to belong to the f-closure of Y, y e Y7/,
if f(¥)c Y and there exists an e ¥ and a sequence {ni} of positive integers
(ny <m,<<...<m;<<..) so that fY(n) = Y.

1.4. — A sequence {«,}c X is said to be an isometric (s-isometric) sequence
if the condition
ATy @n) = Uiy Burr)

holds for all &k, m, n==1, 2, ... with d(=,, @,) < &. A point 2 e X is said to gen-
erate an isometric (e-isometric) sequence under f if {f*(«)} is such a sequence.

2. — Theorem. Letf and g be two commuting functions defined on a com-
pact metric space X, then f and g have & common fized point, provided that f
satisfies the following properties:

(i) a(fw), fy) < diw, ¥),

(ii) if @#f@) then d(f(w), @) < d(z, f(=)).
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Proof. The condition (i) implies that the sequence {d(f*(w), j*+(z))}
is non increasing. Since the space is compact therefore the sequence will con-

verge to a limit point, hence there exists a point y such that y = lim f™(x).
x
By (i) it is clear that f is continuous therefore d(y, f(y)) = lim d(f" (), f"k+1((v)) =
&

= lim d(fy(z), fr+(x))=1m d(fuw+(x), fre+a(@))=d(f(y), ). Contradiction

to condition (ii) unless f(y) = y. Thus y is a fixed point for f.

In order to show the uniqueness we assume that there exists another point
ze X, z 5%y such that f(2) = 2; then d(f(y), f(z)) = d(y, 2) contradicting (i),
therefore z==y. Thus y is a unique fixed point of f. Now since g commutes with f
therefore fg(@) = gf(x) for all x. Again since f(x) = @, therefore fg(z) = gf(z) =
= g(«), and g(») is also a fixed point for f. But f has a unique fixed point say
@. Therefore g(x) = x, and thus x is a fixed point for g.

3.1. — In [8] Warp CHENEY and ALLEN A. GOLDSTEIN have proved the
following theorem:

«Liet f be a map of a metrie space X into itself such that:

0 df@), {) <dz, v),
(i) if @ 7 f(@), then d(f(2), f(«)) < d(w, f(x)),
(iii) for each =z, the sequence f*(x) has a cluster point.

Then for each @ the sequence f*(«) converges to a fixed point of fo»
Here we would like to remark that by relaxing conditions (ii) and (iii) we

get a unique fixed point. Although the theorem has already been given by
MicHAEL EDELSTEIN [8]. We prefer the direct rather simple proof here.

8.2. — Theorem. Let fbe a map of a compact metric space X indo itself
such that

(i) a(f@), 1)) < da(, ¥)
(equality sign occurs only when & = y). Then f has a wnique fized point.
Proof. The compactness of X and the condition (i) imply that each
@ € X7 generates an isometric sequence, EDELSTEIN ([7], theorem 1'). Therefore

by the definition of isometric sequence d(z, f(w)):: d(f(x), fz(m)) but from the
condition (i) we have d(f(w), f(«)) < d(x, f(z)).
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This shows that d(z, f(«)) = 0 and which implies » = f(x), i.e. # is a fixed
point for f. To prove the uniqueness, let us assume that ¥ is another point such
that ¥ =& and f(y) == y. Then d(f(x), f(y)) = d(w, y) contradicting condition
(i) unless # == y. Thus « is & unique fixed point for f.

4, — Theorem. ZLet T and K be two functions defined from a non-empty
set X into itself such that K possesses a left inverse (i.e. a function K- such that
KK =1, where I is the identity mapping of X). Then the function T has a
fized point if and only +f KTK™ has a fived point. (A similar result for right
inverse has been given by CrU and D1az [4].)

Proof. Suppose that x is a fixed point for 7, then T» = x which implies
T(KK)g =, or KIT(K'K)» == Kz, or (KTK-1)(Ka) = Kr; ie., Kz is a
fixed point for KTH-.

Conversely, let us assume that y is a fixed point for HTK-'. Then

KETEy ==y or KKTK'y =K'y or TEK'y=K1y,

i.e. K-ty is a fixed point for 7.

5.1. — A mapping f of X into itself is said to be locally contractive if for
every w e X there exists ¢ and A (e<<0, 0 <A< 1) which may depend on
such that p, g€ 8(z, &) ={y | d(x, y) < ¢} implies

a(f(p), fe)<Adp, @, P, geX, pFEq.

5.2. — A mapping f of X into itself is said to be (g, A) uniformly locally
contractive if it is locally contraetive and both & and 1 do not depend on =.

Remark. A globally contractive mapping can be regarded as (oo, A)
uniformly locally contractive mapping.

5.3. — A continuous mapping is eventually contractive if 0 << d(z, ¥) implies
¥ n(x, y) eI+ (the positive integers) s d(f*(@), f*(y)) < d(=, y)), and it is e-
eventually contractive if f is continuous and

H &>0 such that 0<<d(z, y)<<e
implies

H n(w,y)eI* such that d(f~w), (%)) < d(z, y).
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5.4. ~ A metric space X is 5aid to be convex provided # and ¥ in X implies
there exists 2z in X such that d(z, 2) = d(z, y) = (1/2) d(=, ¥).

5.5. — A mefric space & is said to be e-chainable or well linked if for every
pair (@, b) of points of X and for every & >0 there exists a e-chain of finite
sequence of points, of X, with a =a,,..., a, = b, such that d(a,, ¢4.,) <e
for every ¢ <. In other words, ¢ and b can be joined by a chain of steps atb
most equal to e.

6. ~ Theorem. Let X be a convew, compact e-chainable metric space,
and f & mapping of X into itself which is (e, ) uniformly locally contractive, then
7 is also eventually contractive.

Proof. A theorem by MENGER ([2], p. 41) states that a convex and comp-
lete metric space contains together with a, b also a metric segment whose extr-
emeties are @ and b, that is a subset isometric to an interval of lenght d(a, b).

Using this fact we see that if p, ¢ € X then there are points p = #,, @, , ...,

@, = q such that d(p, ¢) = d(w,—, #;) and d(@,—y, @;) < e. Hence .

=1

(), 1) < 3 Aty f20) <23 dwey, w) = L, 0).

f=1 i=1

By definition it is clear that d(f(p), f(q))< Ad(p, ¢) implies 0 << d(p, ¢)<< e
== d(f(p), f(g)) < d(p, q). Also, by definition every contractive mapping in
the convex complete metric space may be regarded as e-contractive mapping.

Now X is e-chainable, therefore for distinet points p and ¢ there exists p= p,,
D2y ..oy Pu= g such that d(p,, puq) << e for i=20, 1, ..., n—1. By Corollary 1
to theorem 2 [1], p, is asymptotic to p,, under ffori =0, 1, ..., n— 1. Hence
there exists m in I+ such that

d(f"‘(pi), f’"(piﬂ)) < d(p, ¢)/n (=01, ..,n—1).

Therefore

oo

A(fm(p), 1™@) < Z ("), 1"(pia)) < n dlp, Qfn = dA(p, g).

=0

7.1. — @ is proximal to y under f provided for each « >0 there exists n
a member of I+ such that d(f*(x), f*(y)) < «. If # and y are not proximal under
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f they are said to be distal under f. If for each « >0 there exists # in I+ such
that d(f"*(m), f™¥)) < e for all m > n, then « and y are said to be asymptotic
under f. Note that we do not require & = y.

The following result has been proved by BaAmwry [1].

Let X be a compact metric space and f be an e-contractive mapping, i.e.

0<dlzm, y)<e = A(f(=), f(1) < d(=, y).
Then d(z, y) < ¢ implies # and y are asymptotic under f.

7.2. — We prove the following
Theorem. Let X beacompact ¢-chainable metric space and f be e-contractive
mapping, i.e.

0<dl@ y)<e =  df®), {y)<daz, y).

Then every pair of points is aymptotic under f.

Proof. Since X is e-chainable we define, for p, g€ X,

d(py _(l) = inf zd(mi—17 mz‘)’

clp,q) =1

where C(p, q) denotes the collection of all e-chains p =, @1,y ..., T = ¢
[» arbitrary, d(z;, @.4,) << ¢], holds. Indeed since f is e-contractive we have

d(f(mi—l)7 ]‘(:v,)) < U@y y @) provided d(w;—;, z) <e.

Hence

a(fp), @) < inf ¥ d(fwe), @)

op,@ i=1

< inf Zd(mi—17 2;) = d(p, q),

o) i=1

for all p, q. Thus the mapping is contractive.

Now since X is compact and f is contractive mapping of X into itself and
therefore, by Theorem 3.2, f contains a unique fixed point z, also the property
compactness implies that each sequence {f"(m)} converges to @, therefore it
follows that every pair of points is asymptotic under f.
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8.1. — Tollowing LUXEMBURG ([9], p. 541), the concept of a « generalized
complete metric space » may be introduced in this quotation:

« Let X be an abstract set the elements of which are denoted by =, ¥, ... and
assume that on the cartesian product a distance function d(w, y) [0 < d(=z, y) < oo]
is defined satisfaying the following conditions:

(D) d(w, y) =0 if and only if @ = .
(Dy) d(w, y) = d(y, @) (symmetry).
(Ds) d(m, y) < d(w, 2) + d(z, y) (triangle inequality).

(D4) Every d-Caucmy sequence in X is d-convergent, i.e. lim d(z,, %,) =0

n,M—> o
for a sequence #,€ X (n =1, 2, ...) implies the existence of an element ze X
with lim d(», #,) =0 [« is unique by (D,) and (Ds)]. »

> 00
This concept differs from the usual concept of a complete metriec space
by the fact that not every two points in X have necessarily a finite distance.
One might call such a space a generalized metric space.

8.2. — Denote by F' the family of functions a(z, y) satistying the following
conditions:

(i)  «®, y) = «(d(z, y)), i.e. « is dependent on the distance between » and
y only.

(i) 0 <a(d)<l for every d>0.

(iii) o(d) is monotonically decreasing function of d.

In his paper A. F. MoxNaA [10] proved the following theorem:

« Let (X, d) be a complete generalized metric space. Let T, (i =1, 2, ...)
be a sequence of mappings of X into itself satisfying the following conditions:

There exists ¢ and « (¢ >0, 0 < a(d) << 1) so that d(Ts, Tsy) < (@, y) (@, ¥)
(1 =1, 2, ...) whenever d(z, y) <c.

If @, X then a positive integer N(x) exists such that # < N(x) implies

d(Tn+k(mn)a @) S € (b = 1,2, ..).

Then the sequence of {mn}, where @, =T, 2,, (»n =1, 2, ...), converges
and, if y,= lim @, , lim (7', y,) = ¥,. » [Here we have replaced « of given paper

n— oo k>0

by o(z, fl/)]
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9.1, —~ Here we prove that the assumption of Monwna’s theorem imply
even more stronger conclusion.

Theorem. Let all assumptions of above theorem hold. Then a point y
exists with the property that T,..(y) =y (K =1, 2, ...).

In the proof of the above theorem we will use the following theorem and
the proof of which is entirely analogous to that of the theorem 5.2. of [12]
is omitted.

9.2. — If T is contraction mapping of a complete e-chainable metric space
X into itself satisfying

0<dw, y)<e =— AT, TW) <ol y) da, 3),

for every z, y € X, and o, y) € F; then T has a unique fixed point.

Proof of Theorem in 9.1. Consider an arbitrary fixed =, e X; let
% 2> N(x,) be fixed also. Let ¥ be the set of ally € X with the property that a
sequence C(y, x,)C X exists, where C(y, w,,):{g/: Doy Piy Doy -ovy Py= w,,}
with d(p;, pia) < C (i=1, 2, ..., 1). Obviously ¥ is closed metric subspace
of X, also Z,1,(¥Y)c Y. Thus ¥ and 7,4 (=1, 2,...) satisfy the assumptions
of Theorem in 9.1. Therefore it follows that for each %, a unique &, exists so that
Toir &= 2E&,. To prove the theorem only we have to show that & =&, = ...

Consider Tyir(Toti br)= Tnit{Tni2&r) = Tnsi & Thus T,y &, is a fixed
point under 7'y, . But T, has a unique fixed point &, . Therefore T, &= &, .
Then &, is a fixed point under 7,,, . Therefore by the uniqueness of &, &.= &,.
Hence the theorem.
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