B. D. MALVIYA (*)

On Hyponormal Operators. (**)

A bounded operator T defined on a Hilbert space H is said to be a hyponormal if $\|Tx\| \ge \|T^*x\|$ for any $x \in H$. This definition has an equivalent form: we say that the operator T is hyponormal if $T^*T \ge T$ T^* . Here we shall utilise the former definition only.

The spectrum of an operator T, to be denoted by $\sigma(T)$, is the set of all complex numbers for which $(T-\lambda I)^{-1}$ does not exist. The approximate point spectrum of an operator T denoted by $\alpha(T)$, is the set of complex numbers λ such that $\| (T-\lambda I)x_n\| \to 0$, for $\| x_n\| = 1$. The numerical range of an operator T denoted by W(t) is the set defined by the relation $W(T) = \{(Tx, x): x \in H, \|x\| = 1\}$. The closure of the set W(T) will be denoted by $\overline{W(T)}$. We defined $\gamma_{\sigma}(T) = \sup\{|\lambda|: \lambda \in \sigma(T)\}$ and call $\gamma_{\sigma}(T)$ the spectral radius of T.

Lemma 1. If T is hyponormal, then $\|T\| = \sup \{ | (Tx, x)| : \|x\| = 1 \}$. This Lemma is contained in [2].

Theorem 1. Let T be a hyponormal operator, then

$$\| T \| = \sup \{ |\lambda| : \lambda \in \sigma(T) \}.$$

Proof. It is well known [3] that, for any operator T, $\lambda \in \sigma(T)$ if $|\lambda| > ||T||$. On the other hand if T is hyponormal, then by Lemma 1 there exist a sequence of elements $\{x_n\}$ such that $||x_n|| = 1$ for all n and $\lim_{n \to \infty} |(Tx_n, x_n)| = ||T||$.

^(*) Indirizzo: Department of Mathematics, University of Allahabad, Allahabad, India.

^(**) Ricevuto: 25-X-1967.

If necessary by choosing a subsequence, we may suppose that $\lim_{n\to\infty} (\mathrm{T}x_n, x_n) = \lambda$, where $|\lambda| = ||\mathrm{T}||$. Then

$$\begin{split} \parallel \mathbf{T} x_n - \lambda x_n \rVert^2 &= (\mathbf{T} x_n \;,\; \mathbf{T} x_n) - \lambda \; (x_n \;,\; \mathbf{T} x_n) - \overline{\lambda} \; (\mathbf{T} x_n \;,\; x_n) \; + \; \lambda \; \overline{\lambda} \; (x_n \;,\; x_n) \\ \\ \leqslant \parallel \mathbf{T} \parallel^2 - \lambda \; (x_n \;,\; \mathbf{T} x_n) - \overline{\lambda} \; (\mathbf{T} x_n \;,\; x_n) \; + \; \mid \; \lambda \; \mid^2 \;. \end{split}$$

Thus

$$\limsup_{n\to\infty} \| \mathbf{T} x_n - \lambda x_n \|^2 \leq \| \mathbf{T} \|^2 - \lambda \, \overline{\lambda} - \overline{\lambda} \, \lambda + |\lambda|^2 = 0.$$

Hence $T - \lambda I$ cannot have any bounded inverse, so $\lambda \in \sigma(T)$ and

$$\| T \| \le \sup \{ |\lambda| : \lambda \in \sigma(T) \} \le \| T \|.$$

Thus the Theorem is established.

It may be mentioned that Theorem 1 is an indirect proof of a result due to STAMPFLI [4].

Lemma 2. Let T be a hyponormal operator such that $Tx = \mu x$, $x \neq \emptyset$, then $T^*x = \overline{\mu} x$.

This occurs as an exercise in [1].

Lemma 3. For a hyponormal operator T, eigenvectors corresponding to distinct eigenvalues are orthogonal.

Proof. This also occurs as an exercise in [1]. The proof is given here for the sake of easiness.

Let λ and μ be the eigenvalues of the hyponormal operator T corresponding to the eigen vectors x and y respectively. Then by

$$\begin{split} | \; (\lambda - \mu) \; (x, \; y) \; | \; &= | \; (\lambda x - \mathrm{T} x, \; y) \; + (x, \; \mathrm{T}^* \; y - \bar{\mu} \; y) \\ \\ \leqslant & \| \; \lambda x - \mathrm{T} x \| \| \; y \| \; + \| \; x \| \| \; \mathrm{T}^* \; y - \bar{\mu} \; y \| \; = 0. \end{split}$$

Since by Lemma 2 $Ty = \mu y$ implies $T^*y = \overline{\mu} y$. Hence the proof is complete.

Theorem 2. Let T be a hyponormal operator on the Hilbert space H which possesses a set of eigenvectors fundamental in H and C a closed subspace of H

which has at least one non-null eigenvector and invariant under T, then C is generated by eigenvectors of T.

Proof. We have seen in Lemma 2 that the eigenvectors corresponding to different eigenvalues are orthogonal to each other. By our assumption the set of eigenvalues is fundamental in H. So if $N_{\mathbf{T}}(\lambda_i)$ denote the λ_i -th proper subspace of the operator \mathbf{T} , that is, $N_{\mathbf{T}}(\lambda_i) = \{x_i \colon \mathbf{T} x_i = \lambda_i x_i, x_i \in H\}$, then

$$H = \sum_{i=1}^{\infty} N_{_{
m T}}(\lambda_i), \qquad ext{where} \qquad N_{_{
m T}}(\lambda_i) \perp N_{_{
m T}}(\lambda_i) \qquad ext{ for } i
eq j.$$

Let us suppose that M be a closed subspace of C generated by eigenvectors of C. Then our theorem would be established if we show that $M \equiv C$. Let us suppose the contrary, that is $M \not\equiv C$. Then $C' = C \cap M^{\perp}$ is non-vacous. Now if $x \in C'$, then $x \in C$ and also $Tx \in C$, because C is invariant under T. Let $y \in M$, then $Ty = \mu y$ implies $T^*y = \overline{\mu}y$, where μ is a certain scalar. Therefore $(Tx, y) = (x, T^*y) = (x, \overline{\mu}y) = \mu(x, y) = 0$, because $x \in C' \implies x \in M^{\perp}$. Hence $Tx \in C'$ and C' is invariant under T. By our assumption C' contains an eigenvector $\Phi \neq \emptyset$ and so $\Phi \perp M$. Now since M is a closed subspace of C generated by eigenvectors of C, so Φ also belongs to M. But this is a contradictory to our supposition. Hence the Theorem is established.

Lemma 4. For a hyponormal operator T, $\gamma_{\sigma}(T) = ||T||$. It is contained in [4].

Theorem 3. Let T be a hyponormal operator and λ a complex number such that $\gamma_{\sigma}(T) = |\lambda|$ and $\lambda \in \overline{W(T)}$, then $\{p(\lambda, \overline{\lambda}): \lambda \in \overline{W(T)}\} \subset \sigma[p(T, T^*)]$ where $p(\lambda, \overline{\lambda})$ is any polynomial in λ , $\overline{\lambda}$ and the operator corresponding to it is $p(T, T^*)$.

Proof. Let $\lambda \in \overline{W(T)}$. Then there exists a sequence of elements $x_n \in H$ such that $(Tx_n, x_n) \to \lambda$. Now, for $||x_n|| = 1$,

$$\begin{split} \parallel \mathbf{T} x_n - \lambda x_n \rVert^2 &= (\mathbf{T} x_n \;,\; \mathbf{T} x_n) - \overline{\lambda} \; (\mathbf{T} x_n \;,\; x_n) - \lambda \; (x_n \;,\; \mathbf{T} x_n) \; + \; \lambda \overline{\lambda} \; (x_n \;,\; x_n) \\ \\ \leqslant \parallel \mathbf{T} \rVert^2 - \overline{\lambda} \; (\mathbf{T} x_n \;,\; x_n) - \lambda \; (x_n \;,\; \mathbf{T} x_n) \; + \; \lambda \overline{\lambda} \\ \\ \to \parallel \mathbf{T} \rVert^2 - \overline{\lambda} \lambda - \; \lambda \overline{\lambda} \; + \; \lambda \overline{\lambda} \; = 0 \;, \end{split}$$

by Lemma 4.

Consider the following identity:

$$egin{aligned} & \mathbf{T^r}\,\mathbf{T^{*s}} - \lambda^r\,ar{\lambda}^s &= \mathbf{T^r}\,(\mathbf{T^{*s}} - ar{\lambda}^s\,\mathbf{I}) + ar{\lambda}^s\,(\mathbf{T^r} - \lambda^r\,\mathbf{I}) \ &= \mathbf{T^r}\,(\mathbf{T^{*s-1}} + ... + ar{\lambda}^{s-1}\,\mathbf{I})\,(\mathbf{T^*} - ar{\lambda}\mathbf{I}) \ &+ ar{\lambda}^s\,(\mathbf{T^{r-1}} + ... + \lambda^{r-1}\,\mathbf{I})\,(\mathbf{T} - \lambda\mathbf{I})\,. \end{aligned}$$

Now as shown above, the hypotheses $\gamma_{\sigma}(T) = |\lambda|$ and $\lambda \in \overline{W(T)}$ ensure that $\lambda \in a(T)$ and so $||Tx_n - \lambda x_n|| \to 0$, as shown above. Since T is hyponormal, so is $T - \lambda I$ for any complex number λ , therefore $||(T^* - \overline{\lambda} I)x_n|| \leq ||(T - \lambda I)x_n|| \to 0$. It clearly follows from the above identity that

$$\| (\mathbf{T}^r \, \mathbf{T}^{*s} - \lambda^r \, \bar{\lambda}^s) x_n \| \to 0 ,$$
 as $n \to \infty$.

Adding the relations of the above kind, we at once deduce that $||p(T, T^*)x_n - p(\lambda, \overline{\lambda})x_n|| \to 0$, as $n \to \infty$. From this we conclude that $\{p(\lambda, \overline{\lambda}) : \lambda \in \overline{W(T)}\} \subset \sigma[p(T, T^*)]$.

References.

- S. K. Berberian, Introduction to Hilbert Space, Oxford University Press, New York 1961.
- [2] S. K. Berberian, A Note on hyponormal operators, Pacific J. Math. 12 (1962), 1171-1175.
- [3] P. R. Halmos, Introduction to Hilbert Space and the Theory of Spectral Multiplicity, Chelsea Publishing Company, New York 1951.
- [4] J. G. Stampfli, Hyponormal operators, Pacific J. Math. 12 (1962), 1453-1458.

* * *