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B.D. MaLviva (%

On Hyponormal Operators. (%)

A bounded operator T defined on a HILBERT space H is said to be a hyp-
onormal if || Tw|| >| T* 2| for any weH. This definition has an equivalent
form: we say that the operator 7' is hyponormal if T*T >T T* Here we
shall utilise the former definition only.

The spectrum of an operator T, to be denoted by o(T), is the set of all com-
plex numbers for which (T—A )~ does not exist. The approximate point spectrum
of an operator T denoted by «(T), is the set of complex numbers A such that
| (T— 2T)a,| — 0, for | 4,]= 1. The numerical range of an operator T denot-
ed by W() is the set defined by the relation W(T) :{(Tw, x): zeH,
lz] =1}. The closure of the set W(T) will be denoted by W(T). We defined
yo(T) =sup{| 2|: 2€0o(T)} and call y,(T) the spectral radius of T.

Lemma 1. If T is hyponormal, then |T| =sup {| (Tz, 2)|: | 2|=1}.
This Lemma is contained in [2].

Theorem 1. Let T be a hyponormal operaior, then
I T| =sup{|A]: 2eo(T])}.

Proof. Itiswell known [8] that, for any operator T, 2 €' o(T) if | 4 |>|T}.
On the other hand if T is hyponormal, then by Lemma 1 there exist a sequence
of elements {z,} such that | z,| =1 for all » and lim{ (Tw,, @,)] =| T|.

>
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It necessary by choosing a subsequence, we may suppose that lim (Tew,, #,) = 2

fimd O

where | 2] =] T|l. Then
n Tmn_‘" Zmn ”2 - (T[("n ) T$7,)— )‘ (wn 3 Tmn)_ z (Tmm '”n) + Z, 7" (mn b mn)

2

<” T”z—“ A (mn; Tmn)_ 7\- (T"b’", wn) -+ { A

Thus

P AA— A A+ A=0.

lim sup| Tw,— lz,

n—-

T

Hence T— AT cannot have any bounded inverse, so 1€ o(T) and
[T <sup{|2]: 2ea(M)}<| T].

Thus the Theorem is established.
It may be mentioned that Theorem 1 is an indirect proof of a result due to
STAMPFLI [4].

Lemma 2. Let T be a hyponormal operator such that Ty — HT, T = &
then T*» = u .
This occurs as an exercise in [1].

Lemma 3. For a hyponormal operator T, eigenvectors corresponding to
distinct eigenvalues are orthogonal.

Proof. This also occurs as an exercise in [1]. The proof is given here for
the sake of easiness.

Let 2 and u be the eigenvalues of the hyponormal operator T corresponding
to the eigen vectors # and y respectively. Then by

| (A—p) (@, 9) | =] (de—Ta, y) + (@, T*y—puy)
<[ 22— Ta| [ y| +[ || T*y—py| = 0.
Since by Lemma 2 Ty= py implies T*y= py. Hence the proof is com-

plete.

Theorem 2. LetT be a hyponormal operator on the Hilbert space H which
possesses a set of eigenvectors fundamental in H and C a closed subspace of H
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which has at least one non-null eigenvector and inveriant under T, then C is
generated by eigenvectors of T.

Proof. We have seen in Lemma 2 that the eigenvectors corresponding
to different eigenvalues are orthogonal fo each other. By our assumption the
set of eigenvalues is fundamental in H. So if N (4,) denote the A,-th proper
subspace of the operator T, that is, Nﬂl,»):{m,-: Ta;= A; @y x,-eH}, then

H =3 N.(4), where No(A:) LN (4y) for i =4 §.
f==]

==

Let us suppose that M be a closed subspace of C generated by eigenvectors
of (. Then our theorem would be established if we show that M = C. Let
us suppose the contrary, that is M =& C. Then ¢'= (' n M+ is non-vacous.
Now if e (', then we C and alsc Tw e (, because C is invariant under T.
Let y € M, then Ty= py implies T* y= py, where u is a certain scalar. Ther-
efore (Tz, y)= (@, T*y)= (», uy)=p (v, y)=0, because ze ¢' = xe M=*.
Hence Tz e ¢’ and ¢’ is invariant under T. By our assumption ¢’ contains
an eigenvector @ = @ and so @ 4. M. Now since M is a closed subspace of C
generated by eigenvectors of €, so @ also belongs to JA/. But this is a contrad-
ictory to our supposition. Hence the Theorem is established.

Lemma 4. For a hyponormal operator T, y (T) =| T|.
It is contained in [4].

Theorem 3. Let T be a hyponormal operator and A a compler number
such that y (T)=|21| and Ae W(T), then {p(}», ): /’LEW(T)}C a[p(T, T%)]
where p(L, ) is any polynomial in A, -1 and the operaior corresponding to it is
p(T, T*).

Proof. Let A€ W(T). Then there exists a sequence of elements x,e H
such that (Tw,, @,) — 1. Now, for | @,] =1,

” Twn’“ )“wnnz = (Tmny Twn)_ Z (T.’l’)n, mn)—‘ )& (mny Twn) ':"‘ lz (wny xn)
| Tj2—T%A— 22 + IL =0,

by Lemma 4.
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Consider the following identity:
Tr*e— Ar 29 = Tr (T#s— ZsT) - 15 (Tr— A7 1)
= Tr (T#1 4 ... + A1 T) (T — 1)
+ 25 (T + ...+ A1 1) (T— AT).

Now as shown above, the hypotheses y(T) =|A| and A& TW(T) ensure
that 4 € ¢(T) and so | Ta,— Aw,| — 0, as shown above. Since T is hyponormal,
sois T — AT for any complex number J, therefore [[(T*— 7 e, || <|(T—AL)w,|—
~> 0. It clearly follows from the above identity that

| (T T#s— A7 A%z, | =0, as n—>oo.

Adding the relations of the above kind, we at once deduce that | p(T, T%)z, —
— p(% 2)@,]| =0, as # — oo. From this we conclude that {p(2, 1): 2 ¢ W(T)}c
co[p(T, T*)].
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