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The Influence on a Finite Group

of Certain Types of its Proper Subgroups. (*¥)

Introduction.

B. HupperT ([6], Satz 22) proved that if all the proper subgroups of the
finite group @ are supersolvable, then G is solvable. HUPPERT’S result is an ex-
tension of the famous ScHMIDT-TWASAWA theorem. More recently J.S. RosE ([10],
p. 589) extended HUPPERT’s theorem to the following: «If every proper self-
normalizing subgroup of @ has a SYLOW tower complexion p;, P, ..., Pn; then
G is solvable.» R. BAER ([1],[2], [3]) introduced the concept of finite o-dispersed
groups, where ¢ is a partial order in & set of primes z. BAER’S cdncept is more
general than the SyLow tower property of finite groups. In ([1], p. 172) BAER
showed that if every proper subgroup of the finite group G is o-dispersed, o a
partial order in the set of all primes, then @ is solvable. Among the results
of the present paper is that the finite group @ is solvable if every proper self-
normalizing subgroup of @ is o-dispersed, where o is a partial order in the set
of all primes. Actually a much more general result than the one mentioned
above is obtained in the present paper. The reader is referred to Theorem 1.

C. S. Sam [11] termed the finite group @ semi-nilpotent if the normalizer
in @ of each nonnormal p-subgroup P, p & prime, of G is nilpotent. Among
the many interesting results in [11], SAH proved that a semi-nilpotent group is
solvable. We exetend SAH’s result to the following: « The finite group G is
solvable if the normalizer of each nonnormal p-subgroup P, is o-dispersed. »
Here o is a partial order in the set of all primes.

The present paper furnishes some general procedures to obtain sufficient
conditions for a finite group to be solvable. Let A denote a class of finite groups

(*) Indirizzo: University of Kentucky, Lexington, Kentucky, U. 5. A..
(**) The author was supported by National Science Foundation Grant G. P.
5048. — Ricevuto: 2-VIII-1968.



248 J. C. BEIDLEMAN 2]

such that 4 is closed under the operations of forming quotient-groups and sub-
groups and we assume that if every proper subgroup of the finite group G is a
A-group, then G is solvable. We prove that if the abnormal maximal sub-
groups of each normal subgroup of the finite group ¢ is a A-group, then @ is
solvable. A finite group @ is called an almost d-group if the normalizer of each
nonnormal p-subgroup P of @, p a prime, is a A-group. Almost A -groups are
solvable.

In the final section of the present paper we consider almost a-dispersed
groups where again ¢ is a partial order in the set of primes. If pis a g-maxim-
al prime divisor of the order of the finite group G and the SyLow p-subgroups
of G are Abelian, then G contains a normal SyYLow p-subgroup or G is p-nilpotent.

The author wishes to thank Professor REINHOLD BAER for several stimul-
ating conversations on the subjects contained in this paper. Professor BAER’S
general approach to solvability questions has been very helpful to author.

1. -~ Notations and definitions.

The only groups considered here are finite.

If H is a subset of a group G, then: A® = 2~'Hz for each z € G, {H} is the
subgroup of & generated by H, N ,(H) is the normalizer of H in G, C(H) is the
centralizer of H in G.

If H is a subgroup of a group @, then: H!is the first derived subgroup of
H, ¢(H) is the FRATTINT subgroup of H, | H | denotes the order of H, H < G
means H is a proper subgroup of G.

Let H be a subgroup of a group ¢. We define the hypernormalizer of H
in ¢ as follows:

Let H, = H, and for each positive integer i, H, = N (H,). We have
H,<H,<H,<.., and since G is finite, this ascending chain of subgroups
terminates. The subgroup reached is the hypernormalizer of H (see [9]).

The subgroup H of the finjte group G is called self-normalizing if A is its
own normalizer in ¢. Thus H self-normalizing if and only if H coincides with
its hypernormalizer.

The subgroup H of the finite group @ is called an abnormal subgroup of,
G if, tor each g€ G, g€ {H, H}; or equivalently, as shown by CARTER in [4]
and [5] if H satisfies the two conditions:

(a) every subgroup of G containing H is self-normalizing in @G,
(b) H is not contained in two distinct conjugate subgroups of G.

We recall the obvious but convenient fact that a maximal subgroup of
G is either self-normalizing or normal. Hence, the abnormal maximal subgroups
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of G are precisely its self-normalizing maximal subgroups. R. W. CARTER showed
in [5] that a finite solvable group G possesses nilpotent self-normalizing sub-
groups, that all such subgroups are abnormal and conjugate in . These sub-
groups of & are often called the CARTER subgroups of G.

A group @ is called a Sylow tower group if every nontrivial homomor-
phic image of G has a nontrivial normal Syrow subgroup (see [6], [10]). This
is true if and only if for some ordering of distinet prime numbers p;, Py, ...y Pu,
there exists a series of normal subgroups of G:

1@ <G,<... <6, =G,

such that the factor group G,/@,., is isomorphic to & SyLow p,-subgroup of @
(t ==1, 2, ..., n). Such a geries will be called a SyvLow tower of & of complexion
Dys Doy ey Pn (see [10]). G/G, is permitted to be frivial, and this happens
if and only if p, does not divide | @|. In any case, if G has a SYLOW tower comp-
lexion p, , ..., Pu , then all the prime factors of | G | appear among p;, Doy ooy P -
We note that if @ has a SyLow tower complexion p;, P, ..., Pn, then sub-
groups and quotients of G have SyrLow towers of the same complexion (see
[10]).

Let the group ¢ have a SyLow tower complexion py, pay vy Pu. L Py >pa> ...
>p,, then G is said to have an ordered SyLow tower. One of the most strik-
ing properties of supersolvable groups is that they always possess ordered
SyrLow towers (see [6], Satz 7).

Let w denote a set of prime numbers. Then P, will denote the set of primes
not in z. An element z in the group @ is called a m-clement if the order of »
is divisible by primes in 7z only.The group Gis called a m-group if | G | is divisible
by primes in 7 only. The group & is termed s-separated if its composition factors
are either m-groups or P_-groups (see [2]). Thus z-separation and P _-separation
are equivalent properties. We note that a solvable group is m-separated for
every set of primes z. Further, subgroups and quotient groups of m-separated
groups are m-separated (see (2]). The group @ is called z-homogencous if
N (8)/C(8) is a m-group for each m-subgroup S of G (see [2]).

Once again let z denote a set of primes. The group @ is called z-closed if
the products of m-elements in @ are w-elements. We note that z-closure is equiv-
alent to the requirement that the set ¢ of m-elements of G is a characteristic
subgroup of G (see [1], [2]). If set = consists of one prime p only, then we speak
of p-closure which amounts to requiring the existence of a normal SYLOW p-
subgroup and also p-nilpotency amounts to P,-closure. We note that sub-
groups and factor groups of m-closed groups are sm-closed. Many interesting
properties of z-closed groups can be found in [1], [2].

Next we consider a partial ordering o in the nonempty set of primes .
We shall write p ¢ ¢ whenever p and ¢ ave distinet in zz and p precedes ¢ in the
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partial order o. If we have equality of primes, then we always write 7 < p when-
ever p is a prime in 7. Then we note that p ¢ p is false for every prime p in m.
Further, «eb and boc implies ace, where @, b and ¢ are primes in 7 (see [1],[2],
[3])- A o-segment of 7 is a subset I" of = with the following property: if p belongs
bo I" and gop, then ¢ too belongs to I" (see [1], [2], [8]). The finite group @ is
called o-dispersed it G is I-closed for every o-segment I of = (see [1], [2], [8]).
We mention that subgroups and factor groups of o-dispersed groups are o-
dispersed (see [1], [2], [8]). The product of normal o-dispersed subgroups of
the finite group @ is a normal o-dispersed subgroup of G (see [1].

If 72(@) denotes the collection of prime divisors of | G| belonging to 7, then
o defines a partial ordering on #(@); and @ is clearly o-dispersed for the partial
ordering o of z ir and only if ¢ is o-dispersed for the partial ordering ¢ of 7(@).
The set #(&) is called the set of relevant primes of m (see [1]). An element v
of 7(@) is called o-minimal if we have ¢ ¢/5 p for every prime g of n(G). We note
that o-maximal primes are defined similarly. We also note that the group @
is o-dispersed if and only if @/p(G) is o-dispersed (see [1], p. 165). Another
intersting characterization of o-dispersion is the following: the group G is
o-dispersed if and only if every subgroup § of @ is p-closed for every g-minimal
prime p in 7(8) (see [2], Thm. 1.1).

Now let = be a nonempty set of primes and let ¢ be a partial order in 7.
If = is the set of all primes, and if o is the trivial partial order on 7 (i. e. Dfrq
for every pair of primes), then o-dispersion and nilpotency are equivalent
concepts (see [1], p. 173). If z is the set of all primes and ¢ some complete or-
dering on s, then the group ¢ being o-dispersed amounts to G being a Syrow
tower group relative to some complexion of primes (see [2], Thm. 1.1).

Let 7 be the set of all primes and let % denote the natural ordering in sz.
We recall that pn p is false for each p in z, and that we write p L p for each p
in 7. Let ¢ denote the inverse ordering of # and then o is a partial ordering
in 7. We also note that po p is false for each p in =, but e o'b and b g ¢ imply ge,
where a, b and ¢ are primes. Then the group @ being o-dispersed amounts to
G having an ordered SYLOW tower.

2. - Some extensions of the Schmidt-Iwasawa theorem.

A group theoretical property 0 defines a class of finite groups. Thus every
finite group either has property 6 or does not have this property. It will be
convenient to term 6-group every finite group with property 6. Throughout
we shall assume of such a property 0 that the identity group is a 6-group.

For the remainder of this paper we assume that 0 is a group theoretic prop-
erty such that:

0,. Subgroups of 0-groups are O-groups.
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0y, Homomorphic images of 0-groups are 0-groups.

O, If H is a normal subgroup of the finite group G such that A and G[H are
O-groups, then @ is a 0-group.

0,. The class of finite Abelian groups is a subclass of 0.

We remark that 0; is known as the subgroup-inherited property of 6 and 6,
as the homomorphism-invariant property of 0 (see [1]). Let > denote a (non-
empty) set of primes. Then the class of finite Y-separated groups satisfies 0,
through 0,. In particular, the class of finite solvable groups satisfies 0, through 0,.

Let 4 be a group theoretic property such that:

Ay, Subgroups of A-groups arve A-groups.

Ay Homomorphic images of A-groups ave A-groups.

dy. If every proper subgroup of the finite group G is a A-group, then G is a
0-group.

Remark 1. The class of finite A-groups is a subclass of the class of
groups 6.

In the present article we assume that certain proper subgroups of a finite
group G are A-groups and then prove that & is a @-group. In the results to follow
the reader will no doubt notice the importance of A,. The general procedure
used here was suggested by REINHOLD BAER, however the basic motivation
is the now famous ScHMIDT-IWASAWA theorem.

Now let 0 denote the class of finite solvable groups. The SCHMIDT-IWASAWA
theorem is the following:

() If a finite group G has all its proper subgroups nilpotent, then G is solvable.

The hypothesis in (I) has in fact much stronger implications for the structure
of G than solvability (see [7], [8], [12]). J. S. RosE [9] generalized (I) to the
following:

(II) If a finite group G has all its proper abnormal subgroups nilpotent, then
G is solvable.

B. Huerrrr ([6], Satz 22) showed that the statement (I) may be improved
to the following:

(I1L) If a finite group G has all its proper subgroups supersolvable, then G
18 solvable.

We remark that the hypothesis in (ITX) has much stronger implications
for the structure of @G than solvability. For example if the order of @& has at
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least four distinct primes, then G is supersolvable (see [6], Satz 22). J. S. Rose
[9] generalized (III) to the following:

(IV) If a finite group has all of its proper self-normalizing subgroups super-
solvable, then G is solvable.

Remark 2. In the hypothesis of (IV) one can not replace the phrase
«proper self-normalizing subgroups» by « proper abmormal subgroups» The
reader is referred to Example 1.

We recall that a supersolvable group always has an ordered SyLow tower
(see [6], Satz 7). Hence, the next result of Rose ([10], Thm. 8) generalizes
(ITI). Moreover, (VI), which is also a result of RosEk ([10], p. 589), is a generaliz-
ation of (IV) and (V).

(V) If every proper subgroup of the finite group G has ¢ Sylow tower com-
plexion Py, Doy .oy Pn, then G is solvable.

(VI) If every proper self-normalizing subgroup of the finite growp G has «
Sylow tower complexion Py, Py, ..., Pn, then G is solvable.

We now give a result of R. BAER ([1], p. 172) which is more general than
(I), (III), or (V).

(VII) Let o denote a partial ordering in the set 3y of all primes. If every proper
subgroup of a finite group G is o-dispersed, then G is solvable.

From. the results stated in (I) through (VII) we note that for the class 8
of finite solvable groups we can take A to be the class of finite o-dispersed groups,
o a partial order in the set of all primes. Of course, we can take 4 to be the
various classes of finite groups made up of Syrow tower groups of the same
complexion, supersolvable groups, or nilpotent groups.

Theorem 1. ZLet G be a finite group such that the abnormal mazimal
subgroups of each normal subgroup of G are A-groups. Then G is a O-group.

Proof. Suppose that the theorem were false. Then there would exist a
finite group & with the following properties:

(1) G is not a 0-group.

(2) If 4 is a normal subgroup of ¢ and K is an abnormal maximal sub-
group of H, then K is a A-group.

(3) If L is a finite group whose order is smaller than the order of @ and
L satisfies (2), then L is a 0-group.

The group & is not simple because of 4, and (1). Let N £ 1 be a normal
subgroup of G and let S/ be an abnormal maximal subgroup of M/N, where
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MM/N is & (nonfrivial) normal subgroup of G/N. Then S is an abnormal maximal
subgroup of the normal subgroup A of &. Hence, S is a 4-group so that S/N
is a d-group because of 4,. Because of (3) it follows that G/N is a f-group.
From 0, we have the following:

(4) G contains a minimal normal subgroup M such that I/ is not a 0-
group but G/M is a O-group.

Let L be a maximal subgroup of M. If L is a normal subgroup of M, then
M < L <M so that I[* =1 because of (4). By 0,, M is a §-group which contrad-
icts (4). Hence, each maximal subgroup of 3 is abnormal in 3{. Because of
4, and A; M is a -group and this fact again contradicts (4). This completes
the proof.

From Theorem 1 and (VII) we obtain the following corollary which is a
generalization of BAER’s result (VII).

Corollary 1.1. Let ¢ be a partial order in the set of all primes and let
G be a finite group such that the abnormal mazimal subgroups of each normal sub-
group of G are o-dispersed. Then G is solvable.

From Theorem 1 and (III) we obtain the next corollary.

Corollary 1.2. Let G be a finite group such that the abnormal mazimal
subgroups of each normal subgroup of G are supersolvable. Then G is solvable.

The hypothesis in Corollary 1.2 can not be improved to the following: «If
every proper abnormal maximal subgroup of the finite group & is supersolvable,
then @ is solvable. »

BExample 1 (see [9], p. 351). Let H= G L(3, 2), the general linear group
of 3 by 3 matrices over the field of two elements. Then H is a simple group
of order 168. Let f be the automorphism of H given by f: = — (%)%, where
y7 is the transpose of the matrix 4 of H and y~* is the inverse of ¥ in H. Let @
denote the relative holomorph of H by {f}, {f} is a cyclic group of order two.
Then ¢ is not solvable and splits over H.

The abnormal maximal subgroups of G are supersolvable (see [9]). How-
ever, there exist abnormal maximal subgroups of H which are not super-
solvable. For example, H conbains an abnormal maximal subgroup which is
isomorphic to the symmetric group on four symbols.

Lemma 1. ZLet H be a subgroup of the finite group G. If S is a proper
self-normalizing subgrowp of H, then 8 is contained in a proper self-normalizing
subgroup of G.

Proof. Let N denote the hypernormalizer of § in G. If N = @, then §
is subnormal in @ so that § is a subnormal in H. This is impossible since §
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is a proper self-normalizing subgroup of H, hence N is a proper subgroup of
@. Since N is a self-normalizing subgroup of @, the lemma follows.

Remark 3. The substance of the argument in the above lemma was
used by Ross in proving the corollary to Theorem 3 of [9].

Let G be a finite group all of whose proper self-normalizing subgroups are
A-groups. Let H be a normal subgroup of ¢ and let S be an abnormal maximal
subgroup of H. Then § is a proper self-normalizing subgroup of H so that § is
a A-group by Lemma 1 and 4;. From Theorem 1 we obtain the following
theorem.

Theorem 2. Let G be a finite group all of whose proper self-normalizing
subgroups are A-groups. Then G is a 0-group.

Remark 4. We note that Theorem 2 is a generalization of ROSE’s
result (VI).

temark 5. J. 8. RosE (see [9], p. 356) stated a general result which
is contained in Theorem 2. Rosw’s statement is the case in Theorem 2 when
0 is the class of finite solvable groups.

3. - Almost 4-groups.

In the remaining sections of this paper we take 6 to be the class of all finite
solvable groups.

A finite group & is called an almost 4-group if for each nonnormal p-sub-
group P, p a prime, N (P) is a 4-group.

Remark 6. Let 4 denote the class of finite nilpotent groups. Sam [11]
termed an almost nilpotent group semi-nilpotent, and he determined many
interesting properties of almost nilpotent groups. Among the properties that
Sam established for almost nilpotent groups is that such a group is solvable.
In this section we generalize some of SAm’s results.

Theorem 3. Let G be a finite almost A-group. Then G is solvable.

Proof. We prove the theorem by using induction on | G¢|. Let K be
a subgroup of ¢ and let P be a nonnormal p-subgroup of K, p a prime. Then
P is a nonnormal p-subgroup of &, hence N, (P) = N (P)n K is a A-group
by 4,. By induction every proper subgroup of & is solvable.

We can assume that & is nonabelian. Assume by way of contradiction
that G is simple. Let H be a maximal subgroup of G. Since H is solvable, it
contains a nontrivial normal g-subgroup @, ¢ a prime. Then N (@) =H since
G is simple. Therefore, every maximal subgroup of @ is a A-group. By 4, every
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proper subgroup of @ is ad-group so that G is solvable by 4,. Thus G is Abelian
which contradicts our assumption that G is nonabelian. Hence, we can take
@ to be a nonsimple group.

Let M be a minimal normal subgroup of G. Then M is a proper subgroup
of @ so that A7 is solvable. By Lemma 1 of ([1], p. 118), I is an elementary
abelian g-group, ¢ a prime. We now show G/3I satisfies the conditions of the
theorem. Let K/J denote a nonnormal r-subgroup of G/M, r a prime. We
distinguish two cases.

Case 1. # ==g¢. Then K is a nonnormal g-subgroup of G so that N (K)
is a A-group. Since NGI,M(K/M) = N (K)/ M, NG/M(K/M) is a d-group by 4,.

Case 2. 7 7 q. Then there exists a nonnormal r-subgroup L of & such
that LM = K. Further, we note that N (L) is a 4-group since & is an almost
A-group. Since

N gy (K| M) = N o (LM| M) = N (L)M|M =~ N (L) M o N (L),
it follows that N, (K/M) is a A-group by 4.
In either case, N, (K/3) is a A-group so that G/I is an almost A-group.

By our induction assumption G/M is solvable. Hence G is solvable since G/
and M are both solvable. This completes the proof.

By the proof of Theorem 3 and mathematical induction we obtain the fol-
lowing corollary.

Corollary 3.1. ILet G be a finite almost A-group. Then:
(a) If H is a subgroup of G, then H is an almost A-group.
(b) If H is a normal subgroup of G, then G/H is an almost A-group.

From the remarks made in the previous section we obtain the following
corollary to Theorem 3.

Corollary 3.2. Let o denote a partial ordering in the set of primes .
If the finite group G is almost o-dispersed, then G is solvable.

Remark 7. Corollary 3.2 is a generalization of (VII).

Next we present some examples of almost A-groups.

Example 2. Let o denote the inverse of the natural ordering in the
set of all primes >. We take 4 to be the class of finite o-dispersed groups. Let
8, (resp. A,) denote the symmetric (vesp. alternating) group on four symbols.
Then Y (8,) ==Y (4,) = {2, 3} and p =3 is the unique o-minimal prime of
both > (8,) and > (4,). Because of Theorem 1.1 of [2], S, and .4, are not o-dis-
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persed groups, however S8, and A, are almost o-dispersed groups. Further,
we note that & = 8,x 4, is not an almost ¢-dispersed group.

We conclude this section with some results whose content is similar to Theor-
em 4 of [11].

Lemma 2. Let G be a finite almost A-group and let G = H x K, where H
and K are nontrivial normal subgroups of G. If H contains @ nonnormal p-sub-
group P, p a prime, then K is a A-group.

Proof. Let P be a nonnormal p-subgroup of H. Then N (P) is a proper
subgroup of ¢, hence N (P) is a A-group which contains K. By 4, , K isa
A-group.

Throughout the remainder of this section ¢ will denote a partial order in
the set of all primes .

Theorem 4. Let G be a finite almost A-group and let G= H x K, where H
and K are nontrivial normal subgroups of G. Then:

(a) If H is not o-dispersed, then K is a A-group.
(b) If H and K are not o-dispersed, then G is a divect product of A-growps.

Proof. (a) Assume that H is not a o-dispersed group. Because of Theorem
1.1 of [2], there exists a subgroup § of H and a ¢-minimal prime p in >(8)
such that the SyLow p-subgroup P of § is nonnormal in §. Hence, P is nonnor-
mal in H so that K is a A-group by Lemma 2.

(b) This is an easy consequence of (a).

We now assume that the class of A-groups satisfies the following additional
property:

Ay . The direct product of A-groups is a A-group.
Remark 8. The class of finite o-dispersed groups satisfies 4, through 4, .

Corollary 4.1. Let G be a finite almost A-group and let G =HXK,
where H and K are nontrivial normal subgroups of G. If H and K are not o-dis-
persed, then G is a A-group.

Proof. This follows from Theorem 4 (b) and 4, .

Corollary 4.2. Let G be a finite almost o-dispersed group and let G=H X K,
where H and K are nonirivial normal subgroups of G. Then either H or K is a
o-dispersed group.

Proof. This is an immediate consequence of Corollary 4.1,
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In the theorem to follow we use the fact that finite nilpotent groups are
o-dispersed. This fact is included in Theorem 1.1 of [2].

Theorem 5. Let the finile group G be a direct product of the nonirivial
normal subgroups H and K. Then:

(a) If G is almost o-dispersed and H is not o-dispersed, then K is either
Hamiltonian or Abelian.

by If (|H|, |K|) =1, H is Hamiltonian and K is an almost o-dis-
persed group, then @ is an almost o-dispersed group.

Proof. (a) Let G be an almost o-dispersed group and assume that H
is not o-dispersed. Let P be a p-subgroup of I, p a prime. If N (P) < G, then
H is a o-dispersed group since H < N (P). Hence, each primary subgroup
of K is normal in X so that each subgroup of K being nilpotent is normal in K.
This shows K is either Hamiltonian or Abelian.

(b) Let P be a p-subgroup of G, p a prime. Since the orders of H and KX
are relatively prime it follows that P < H or P < K. If P < H, then P is normal
in @ since H is a Hamiltonian group. Hence, we assume that P <K. Then
N (P) = HXN (P). If N (P)<< K, then N,(P) is a o-dispersed group since K
is almost o-dispersed. If N (P) = K, then P is normal in @G. Therefore, we
have shown that @ is an almost ¢-dispersed group.

4. = Almost o-dispersed groups.

In the present section we devote our study to almost g-dispersed groups,
where ¢ is a partial order in the set > of all primes. We show that a finite 4-group
which is almost o-dispersed is a SYLow tower group. We begin with the follow-
ing theorem.

Theorem 6. Let G be a finite almost o-dispersed group and let p be a
o-mazimal prime in Y (@). Then either G contains a normal p-subgroup or G is
Pp-closed.

Proof. Assume that @ is not Pp-closed. Because of Theorem 5.1 of [2] & is
not p-homogeneous. Hence, G contains a p-subgroup ¢ such that N (@)/C(@)
is not a p-group. Therefore, there exists a Pp-element » of N (@) which
is not contained in C,(Q). Assume by way of contradiction that N (@) is a
proper subgroup of G. Since p is a g-maximal prime of D(N (@) and N (Q) is
o-dispersed, it follows by Theorem 1.2 of [2] that N (@) is Pp-closed. Let H
denote the set of Pp-elements of N (Q). Then H is a normal subgroup of N (@)
which contains # and further HQ = H X . This shows that z is an element
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of C,(Q) which is a contradiction. Hence, § is a normal subgroup of @. This
completes the proof.

Remark 9. There exist finite almost o-dispersed groups ¢ and 2 ¢-max-
imal prime p in 2.(G) such that G is not Pp-closed and G contains a mnormal
p-subgroup which is not a Syrow p-subgroup of @. For let ¢ denote the inverse
of the natural ordering in > and let S8, denote the symmetric group on four
symbols. Then 8§, is an almost o-dispersed group and 2 is the unique o-max-
imal prime of >(8,) == {2, 3} (see Example 2). We note that 8, is not 3-closed
and 8, contains a normal 2-subgroup which is not a SyLow 2-gubgroup of §,.

In view of Corollary 3.1, Theorem 6 has the following

Corollary 6.1. TLet G be a finite almost o-dispersed group and let p be o
o-maximal prime wm (). Then G contains a normal p-subgroup P, (possibly
trivial) such that G|P, is Pp-closed.

Theorem 7. Let @ be a finite almost a-dispersed group and let p denote o
o-maximal prime in Y (G). If the Sylow p-subgroups of G are Abelian, then
G is either Pp-closed or p-closed.

Proof. Let P be a SyLow p-subgroup of & and assume that N(P)isa
proper subgroup of G; that is G is not p-closed. We note that P is a g-maximal
prime of (N (P)). Because of Theorem 1.2 of [2], N (P) is Pp-closed so that
N(P) = P xR, where R is the normal subgroup of N (P) of all Pp-elements of
N, (P). Since P is abelian, C4(P) = N (P) and therefore ¢ is Pp-closed by
BURNSIDE’s theorem (see [18], Thm. 6.2.9). This completes the proof.

We recall that the finite solvable group @ is termed an A-group if all the
SyLow subgroups of ¢ are Abelian. Many interesting properties of A-groups
can be found in TAUNT [14]. We note that a finite o-dispersed group is an A-
group whenever its SYLow subgroups are Abelian. This fact is a consequence
of Corollary 3.2.

Theorem 8. Let G be a finite almost o-dispersed group. If G is an A-group,
then G contains a normal Sylow subgroup.

Proof. We establish the theorem by induction on | G|. Let p be a o-max-
imal prime of 3(@). By Theorem 7, G iy either Pp-closed or G' contains a nor-
mal SYyLow p-subgroup. If G contains a normal SYLoOw p-subgroup, then the
theorem follows. Hence, assume that G is Pp-closed. Then the set K of Pp-
elements of ¢ is a normal HALL subgroup of G. Because of Corollary 3.1, K
is an almost o-dispersed, and since K is an A-group, it follows by induction
that K contains a normal Syrow subgroup Q. Since H is a normal HALL sub-
group of ¢, @ is a normal SyLow subgroup of G. This completes the proof.
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Remark 10. The assumption in Theorem 8 that ¢ is an A-group can
not be omitted. For let ¢ denote the inverse of the natural ordering in > and
let S, denote the symmetric group on four symbols. Then 8 is an almost o-dis-
persed group which is not an A-group (see Example 2). But 8, does not con-
tain a normal SYLOW subgroup.

Let H s 1 be a homomorphic image of the finite group G. Then H is an
A-group if @ is an A-group. Further, if G is almost o-dispersed, then H is al-
most o-dispersed by Corollary 3.1. Because of Theorem 8 we obtain the follow-
ing theorem.

Theorem 9. Let G be a finite almost o-dispersed group. If G is an
A-group, then G is ¢ Sylow tower group.
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Abstract.

In the present Note we determine several sufficient conditions for a finite group G to
be solvable. One such condition is that the normalizes Ny (P) in G of each nonnormal p-sub-
group P of @, p a prime number, is supersolvable.



