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Representation, Uniqueness and Isolated Singularity
Theorems for Solutions to Linear, Parabolic Equations
of Higher Order. (**)

In this paper we first derive representation and uniqueness theorems for
solutions to linear, parabolic equations of higher order with variable coefficients.
These theorems ave proved by making use of some rather precise estimates
on the fundamental solution. Using these representation and uniqueness theorems,
we are then able to give theorems concerning the behavior of solutions to parab-
olic equations in the neighborhood of an isolated singular point.

1. - Notation and Assumptions.

Let I, denote n-dimensional Euclidean space and let z, &, ete. be elements
of R, with the respective coordinates (@ , ..., @), (&1, -y &), €tc.. We lot 2=

n
= Yy u; & and | @] = (@-2)/2 For all £eR,, we set df = d§ ... A&, .

i=1

Let ¢, 7, etc. be elements of R,. Open intervals in R, e. g., {t0< <t}
will be denoted by (%, ), closed intervals, e.g ., {f, <t < tl} by [to, t], ete..
Let I be an intervalin R, . Denote the topological product of B, with I by B, x I.
We shall often speak of a strip, e. g., the strip ¢, << ¢ < #;, and mean R, X (, , ).

(*) Indirizzo: Department of Mathematics, Oregon State University, Corvallis,
Oregon 97331, U.S.A..
(**) Ricevuto: 16-IV-1968.
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We shall always use o and f to denote multi-indices, i. e., n-tuples of non-

n
negative integers. For multi-indices, we define |a| = > o;,
i=1
D* = d%/oaf ... daln and, for all e R, , & =&, &,

Let us now define the differential operator, L, by

(1) Lu = 3 ay(», t) D*u— du/ot,

laj =20

where p>1 is an integer.
In order to formulate the assumptions on I, it is convenient to introduce
the following class of functions.

Definition. Let I =[t,, I], where 0 <t, << T, and let R = R,xI.
A function, f(z,?),is said to belong to the class H(z; »; ), if it is defined, con-
tinwous, and uniformly bounded on R, and if there exist positive constants
H, v, 0 <<y <1, such that

[ fa', ) — @, 0| <H|&'— "],

for all (z', 1), (&, )€ R.

We now make the following assumptions on the operator L defined by (1).

(A1) The functions Dfa (z, 1), 0 <| ] <|al, || =0,1, .., 2p—1, and
0<|p|<2p—1for |a| =2p, belong to the class H(x; »; R). The functions
Df a 1), |«| =]|pB| =2p, are continuous and uniformly bounded.

(A 2) L is uniformly parabolic, i. e., there exists a constant y >0 such
that

2p

yEPP<(—1) Y a (o, 1) E< (1) ]| &

|al=2p

for all (», t)eR, £ R, .
We shall always assume that I satisfies (A1) and (A 2) without explic-
itly stating this each time.
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2. - General Comments.

In this article we shall treat the CAvcHY problem for the equation Lu = 0,
i. e., we shall study the problem

2) L =0, vel,, Lh<<t<T, u(w, 1) known.

After deriving some estimates on the fundamental solution (defined prec-
isely below), we obtain a representation theorem for solutions to the problem
(2). With the help of the representation theorem, we obtain conditions under
which it is possible to represent solutions to Lu =0 in a strip t,<<i< 7 in
the form

(3) wa, 1) = [ I, t; & 1) o(d€),

where ['is the fundamental solution of (1) and g is a signed measure: From the
representation (3), we derive a uniqueness theorem. These results extend the
earlier work of TvcmoNoFr [25], KrzyzaNski [15], [16], Rosexsroom [23]
and others (see in this respect also [24]), as well as the more recent work of
FriEpMAN [11], ARONSON [4] (and also [1] when specialized to a single equation),
and GUENTHER [13]. In a sense these results are also extensions to higher order
equations of similar results obtained for positive solutions to parabolic equations
of second order. See in this respect the work of AroNsox [8], [4], FRIEDMAN
[11], KrzvzANSKI [15], [16], WIDDER [27], and others. These authors have
shown that the assumpion of positivity implies an integral growth condition
of the type stated in Theorem 2, below. In our case, such a growth condition
must be postulated, but then we are able to obtain results similar to those for
positive solutions. Finally, by a modification of the proof of the uniqueness
theorem, we obtain theorems on isolated singularities for solutions to Lau==0
in a strip 4, << £ < T. These results extend to classical solutions to L = 0, the
work of ARoNsON [2], BIDBLMAN [8] (and when specialized to a single equat-
ion [9]), and P1~1I [22]. Again, these results are similar to those obtained for
positive solutions of parabolic equations of the second order by Aronson [38]
and Krzyzanski [17], [18].

3. « Preliminary Resultus.
‘We begin with the following

Definition. A function, I'(#, ¢; & 1), is said to be a fundamental solution
for L =0 if:

i) [ is defined and continuous for all (z, t), (£, 7) € I except for (z, t) = (&, 1),
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i
St
[e)

ii) I'is 2p times continuously differentiable with respect to the z variab-
les and once with respect to the ¢t variable except at (2, #) = (&, =) and sabisfies
LI" = 0 except at (z, t) = (&, 7).

iii) For all bounded and continuous functions ¢ defined on R,,

lim ( (@, t; & 1) p(&) A = p(a®),

(=, 0>t 7,

for all e R, .

Theorem 1. There exists a unique, fundamental solution, ['(x, t; &, ),
to Lm == 0. Further, there exist positive constants K, A depending only on the
constants of the assumptions (A1) and (A 2), such that

| D(, t; &, o) | <K (t— )~ tlabiEn gxp d lo—&f ern
s Uy S == 1(t—1) H

for |o] =0, 1, ..., 2p, and

r — 2p\ 1/ (2p—
| (3fa0Ta, 45 & )] < K (1— =)=l exp{— ( p _i‘)w) . }

In what is to follow, the positive number A will always refer to the constant
2 of Theorem 1.

The proof of Theorem 1 may be found, for example, in FrIEDMAN [11].
See in particular pages 251 and 255 there. The uniqueness part of this theorem
follows easily from the definition of a fundamental solution and from the next
theorem.

Theorem 2. Let u(z, t) be continuous in the strip t, <t << I and satisfy
Lu = 0 @0 the strip t, << t << T. Suppose ulw, t,) =0 for all v € R, and that there
exists a positive constant yu such that

T
ffexp (—u|®|9) | wz, t)] de dt < oo, q = 2p/2p— 1).

iy 2z,

Then u(z, t) = 0 in the strip t, <t << 1.

This theorem is a mild generalization due to ARoxson [1] of a theorem of
FriepMAN [11] and SLoBODETSKI [25], although for parabolic equations of the
form Lu == 0, where the coefficients depend only on ¢, it was first proven by
LADYZHENSEAYA [21].

In the proofs of the theorems to follow, it will be apparent that we only
make use of the fact that a fundamental solution exists and that a uniqueness
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theorem is available. Indeed, these requirements dictate the assumptions
on the coefficients of I.. As a consequence of this remark, the theory developed
below may be extended in several ways. For example, we could make less
stringent assumptions on the coefficients of I. and more stringent assamptions
on the solutions to Lu = 0 and make use of the uniqueness theory developed
by Aroxsox [1]. In the case where p = 1, we could malke use of the uniqueness
theory of AroxNsoN and Brsaza [5] and the fundamental solution constructed
either by KrzyzANskr and SzyBrax [18], KrzYzANSKI [17], or by ARONSON
and BEsarA [6], or we could make use of the uniqueness theory of ARONSON
in [4] and further extend our results. For the sake of greater clarity and an
effort to give & unified treatment of the problem considered here for all integral
values of p making only minimal assumptions on the solutions « of Lu=0,
we shall only develop the theory using the assumptions (A 1) and (A 2) and the
uniqueness Theorem 2.

4. - Fundamental Lemmas.

The purpose of this section is to derive some rather precise estimates on
the fundamental solution for La = 0.

Lemma 1. ZLe (2, t') be a fized point in the strip t, <<t < T and let D
be a compact subset of the strip t, << t<<t' . Then for all (z, t) € D,

x — & En\yes—n ]
4) (t— 1)~ rlabien exp{—— (M) } <

1 —1,

[ x — 5 in 1/(2p—1)
< N expy — S ,
0

where N is a positive constant depending only on | a|, D, n, p and (&', t').

Proof. Since D is a compact subset of the strip t,<<t<C?', there exist
numbers T, T., fh< T, < T,<t', such that if (v, 1) e D, then 7, <I<1,. Lot
w?? = (t' — t,)/(T,—t,). Clearly w?® >1. Consider the set B ={f|&€R,,

w

|o'— €] > max |z— ' |}. For (v, t, & € DxE, we have w|é—a|>
R

Sw|é—ao|—o|a—a|>]|E—2a|. Hence, | E—a|/t—1)"">w|é—a]/

[ — 1)V > | E— o' |/(t' — )P, Thus, (4) holds for (s, t, §)eD X B

with N == (r;— 8,)~"t1Me»  Tet CF denote the complement of B. Set m =

== min exp { — (M)llm Y } . Since CF is compact, m >0 and it follows
£€CE i —1,

that (4) holds for (s, t, &) € DxCE with N = 71; (1, — to) " b,
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Lemma 2. For each a >0 and cach compact subset D of the strip t, <<t <
< min {7, {, -+ 1 /(Aa21’~1)}, there cwists a constant M depending on D, a,
and the constants of the assumptions (A 1) and (A 2), such that for (z, ty € D,

| D (w, 15 & t,) ]| < M exp {—alé
| (0/at) [ (x, 5 & )| < M exp

QPJ(ED—I)}, ’(/l =0, 1, ..., 2p,

apftep—17Y
f.

Proof. TFirst apply Theovem 1. Next, set 2’ =0 and ' = mln{T to -+

+ 1/(Ze*=1)} in Lemma 1 and use the properties of the exponential function.

In our investigation of isolated singularities for solutions to Ta =0 in
a strip, we shall need a result stating that if | &— & | <sx (t— 7)"/*?, where #
is a positive constant, then for {— 7 sufficiently small, there exists a constant ¢
such that I'(z, 1; & 1) > C (t— )", This bound from below on the fund-
amental solution for Lu = 0 generalizes a similar bound obtained by Ty,
Karaspyixov, and OLeNik ([14], page 82), for second order parabolic equa-
tions. To facilitate the discussion, we introduce the following notation.

Let A (&, 1, 7) -:_—fa (& 0) A0, and let G(a, 1; & 7) = ”fe\p{~'& (m— &)
+ (=134 (5, i, ) }dn Then the fundamental solutlon can be written

Ja]=2p

in the form (see FRIEDMAN [12])

(5) Dz, 15 & 7) = G, t; & 7) + R(z, t; & 7),
where R satisfies the estimate

(6) | B(z, t; & 0| < B (t— )",

Here B is a positive constant depending on the constants of the assumptions
(A1) and (A2), and », 0<<»<1, is the constant arising from assumption
(A 1).

We now investigate G(w, ¢; £, 7). Making use of assumption (A 2) and in-
tegrating, we find that

(7) G(E, t; & T) = (20 >ﬂfexp{ 1)7)211 (& 1, T dn >

a;:"ﬂ

W, y-—n;(-u) 7 s
2p —_ . ]" . [ A— n; 2p)
}d?y 2p (2x)» (22}) ( ) ’

where w, is the surface arvea of the unit sphere in n-dimensions, and [(z) is
the Eulerian gamma function.
Let us now write G(z, t; &, ) = [G(, t; & ©)— G(&, t; & 1)] - G(& t; &, 1)

> (2n) [ exp
Ry
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and estimate the difference in brackets.
(8) | G, 15 & 1) — G, 45 & 7)<

< (2m)~" f | exp (— i(z— &) ) — 1| exp{(—1)” z JE L Tyt dy

Ry ==

< (2m) ”flﬁ‘ngn‘e\Pl—” > A&t ‘6)17 }(177
laf=2p
< (22)™| "”-"51 “"7 | exp (— pt—1) |7 |*) dy
Ry,
=w, ['(rn - 1)/2p) 2p)— ki | o — £l t— )y~ vlen,
Let us define the constants ¢’ and ¢'" by
0" =,y ['(n)2p) 2p)* )™
9)
O = o, T((n -+ 1)/2p)) (2p)* (2)—n p~ T2/,

From (5) - (9) follows then

(10) Iz, t; & )2 C't— g)en o

£ — E I (t— T)—(n+1)/(2p)ﬁ

— B (t— 7)),

Using the constants defined in (6) and (9), we state the following lemma,
the proof of which follows immediately from (10).

Lemma 3. If |o—&|<x(— 7)1, where x is any positive constant
satisfying » < C'J(20") and if (t— 7)< (C'/(4B)) y#v then there exists a positive
constant C depending only on n and the constants of the assumptions (A1) and
(A 2) such that

I, t; & 1) > C@— 1)~/

5. - Representation and Uniqueness Theorems.

From the properties of a fundamental solution and the estimates of Lemma 2,
we obtain the following theorem.

Theorem 3. Let p(x) be a continuous function defined on R, and suppose
for some constant u >0 that

J.exp (—ulz])]|p@) | de< oo, where q = 2p/(@p—1).

Ry
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Then the function

w(w, 1) = f]’((v, 15 & ty) (&) A&

n

is continuous in the strip 1, <t< min {T, t, + 1/()4¢27’"1)}, it satisfies Ly =0
W the strip ty<<t< min{t, ty - 1/(2/;2?’*1)}, and lim w(w, 1) = @a°),
(@, = (0 1, +)

for all 2°e R, .

Theorem 3 is known. See for example BIDEL'MAN [10]. However, the proof
based on Lemma 2 is particularly simple.

Theorem 4. Suppose w(ax, t) is continuous in the strip t, <t << T, satisfies
L =0 in the strip t,<<t<< T, and for some constant w >0 satisfies the growth

T
condition ff exp (— | %7 | u(z, 1) | dz dt < oo, where g =2p/(2p —1). Then
to x,

in the substrip i, <t< min{T, ty -+ 1/(2@21’—1)}, w(@, 1) may be represented by

u(w, t) ‘::fr(wy t; 5, to) ’M(«f, to) d§

z,

Proof. TLet 7' =min{T, &, +1/(2u>)} and o(z, 1) = [ I, t; & 1)

B
(&, ) d&. Form the function w(z, 1) = w(x, t)— v(z, t). From the hypotheses
of the theorem and Theorem 3, it follows that w(, 1) is continuous in the strip
bh<t<<IT', w(z, t,) =0 for all ze R, , and Lw = 0 in the strip to <<t << IV.
We now show that in a certain substrip, ¢ <<t<Ch, of the strip #,< ¢ < T,
the function w(xz, ¢) satisfies an integral growth condition of the type given in
Theorem 2. We shall then be able to conclude by Theorem 2 that w(z, t) = 0
in the substrip 4, <t¢< h. By repeating the argument on parallel substrips
in a standard way, one can show that w(x, t) = 0 in the strip 1, < ¢ < T', which
will prove the theorem.
Let g = 2p/(2p—1), and let ¢ — 29, Integrate the inequality

exp(— ua | & [9)- | w(&, 7) | < exp(— pal &l wE )| +
+exp(—pa| &[0 [|TE 758, ) ws, 4,)] ds

n

with respect to & over ®,. In the resulting inequality, interchange the order
of integration in the second integral on the right hand side, observe that ¢ >1
implies — ua <<— u, to obtain

(1) [exp(—pual&]9) - [w(E, )| d&< [ exp(— | ElN- | wE )| aé +

+ [ ] uts, )] ds [| I v s, 1) | exp(—pa| & |7) d€.

7 2y
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We now estimate the integral

I=[|I@E v s )] esp(—ua| &7 dé.
Ril

In the computations to follow, € will denote a positive constant which may

change from formula to formula. We find

I< O (v—to)len [ exp {— | E—s |7 (Ar— M)~ — pa | & |0} d&
R;l

= (7 — t,)~7/27) [ f + f }exp{~[§——-s[q'

lél=tals] 181> 1a]s

(A — M) — ya | £} dE =1, + T,
respectively. For I, we have

I, < C (v— to) 19 exp {(— | s |9) f exp{—|&—s|t (lr— Mo)y~Uer-01dE

Ey

= Crexp(—puls]9.
To estimate I, , let us note that for v — ¢, sufficiently small, say t— t, < h— 1,

1
where h, t,<<h<Tt, - 3
— lto)}lﬂzl’—l) | s]¢. Consequently, from the fact that [E—s|>|s]—]¢&|>
> %|s| in the region under consideration, we find

1 2p—1
— , is fixed, we have s 1<{2-92(Ar —
9utly s H

— [ &—s |20 — Me)rerD) — pa | E[1<—u]s|e.
Consequently,
0 [ exp{—| &—s|Y2(dr — Agp)1 K200} A&

HESTIE!

) [ exp{—| &— s |7/2(2x— Mp)1er-} d

R?l

I < C (7— 1) /2 exp(— u | s

< C (v —to) /) exp(— p | s

= (- exp(—pu]|s]7).
From (11), we obtain
[exp—pal&] o) [we o] de<[expl—u| &l | wE 7)|dE +

(12) "
+ G’fexp(—-,u[s]fl)- | uls, )] ds.
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Integrate (12) with respect to v from ¢, to k. The right hand side of the resulting
inequality is finite; hence, w(z, ?) = 0 in {, <¢ < h. From our remarks at the
beginning or the proof, the theorem now follows.

The following theorem is an immediate consequence of Theorem 4.

=

Theorem 5. Suppose u{z, 1) is continuwous in the strip 1, <t<<T and
satisfies Luw = 0 in the strip t,<<t<< T. If there exist positive constants u, m
such that

f exp(— u|aln - | w@, 1) de<m, g =2p/2p—1),

R?l

for all t in the interval t, << t << T, then n the strip t, <t << min {7, t, + 1/(Au?-1)},
u(w, 1) may be represented by

u(x, 1) :f]"(m, t; & t,) u(&, b)) d&.

Theorem 6. Suppose w(x, t) is continuwous in the strip t,<<t<< T and
satisfies Law = 0 there. Suppose there ewist positive constants u, m such that

(13) f exp(— u|@|9) - | u(®, 1) | do < m, q =2p/2p—1),

z,

for all t in the interval ty<<t<< T. Then in the subscript t,<<it<< min{T, t -+
-+ 1/(74627’“1)}, w(w, t) may be represented in the form

(14) ulw, 1) = [ Iw, 1; & 1,) o(dw),

B
n

where p 2 a signed measure and the integral converges absolutely in this substrip.

Remark. This theorem is analogous to one proven by KRZYZANSKI
[18] for positive solutions to second order parabolic equations. KRZYZANSKI
showed that positive solutions to second order parabolic equations automat-
ically satisfy a growth condition of the type (13). From this KRZYZANSKI ob-
tained a representation theorem. In our case, we postulate the growth cond-
ition (13) and then obtain a representation.

The proof of this theorem follows very closely the proof of KRZyZANSKI'S
Theorem 4 (see [18]) and so will only be sketched here. Furthermore, we shall
make use of the measure theoretic results contained in KRrzYZANSKI'S paper.

Let ' = min{Z, & +1/(Au**")}, ¢ =2p/(2p—1), and let 6, 0 < o<
< (I"—1,)/4 be arbitrary. Define for any BoOREL set F C I, the family of set
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functions {»,} by

fe\p<~—msl ul&, 1o + ) d& .

The v,(Z) are uniformly bounded by m and we write
vs(E) - fcxp (—ul & | ty + 6)| dE—
— [exp(— | &0 { | ul&, ty 4+ &) | — ulé, t, + )} dE =
E

= ((F)— n,(F), respectively.

The non-negative measures {Ca(E)} and {776(]3)} are uniformly bounded
with respect to J. There exists, therefore, a sequence, call it {(5,} with §; — 0,
I — oo, such that each of the sequences {Ca,(E)} and {%l(E)} converge to the
non-negative measures [(F) and #(#), respectively.

Now let (», 1) be an arbitrary fixed point in the strip ¢, <<t << 7". We may
assume {0,} is such that #, + 6,<¢, 1=1,2, ... Then the sequence
{W(&)} defined by

WiE) = I'(x, t; & o + 0,)-exp (u] &%)

is uniformly bounded by Lemmsa 2. Further, the functions W,(&) are cont-
inuous functions of & By Theorem 5 and the definition of W, and Vs, We have

[ W) v, (A8) = [ T(w, 15 &ty + 8) wlé, to + 00) A& = w(w, 1) .

On the other hand

Lm [ W) v,(d&) = lim f (@, t5 & 1o + 0)) exp(u|&[9) - £, (dE)

l—r R,

—lim [ I(x, 4; & t, -+ 8,)-exp (u] £]9) N5 (AE) =
IBH

= [ I(@, t; & to)-exp (u] £]9) - {¢(A8) —n(dd)}.

£,

Setting exp (u| &9 C— exp (u| &|1) 'y == 0, we obtain (14). By the way in
which p was constructed, it is easily seen that (14) converges absolutely.

Theorem 6 enables us to extend the uniqueness theorem in the following
manner.
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Theorem 7. Suppose u(z, t) is continuous in the strip t,<<t<< T and
satisfies L = O there. Suppose there ewist positive constants u, m such that

fexp(- wla|n | we, )] de<<m, q =2p/(2p—1),
i3

n

for all t in the interval t, << t << T. If im wu(w, t) == 0 for all z € R, , then u(w,t) = 0
= tyt

in the strip t,<<t<<min{T, t, + 1/(A per1) %

Remark. In the case of the heat equation, Theorem T is due to RoOSEN-
BLOOM [21].

Proof. By Theorem 6, u(z, {) may be represented in the form
wa, 1) = [ (@, t; & @) odé),
Rq

where ¢ is a signed measure. Let ¢ = 7— o0, where v = exp (©]£]?)-¢ and
o ==exp (u|£]?)-n and  and % are the measures constructed in the proof of
Theorem 6. Let D c R, be an arbitrary, bounded domain. We show that o(D) = 0.
Let @ be an arbitrary but fixed point in D. Let @ be the cube defined by the
inequalities

P4 1/(2p)
| éi— | < ;z(t_t‘)) !

where » is the number from Lemma 3 and {—{, is chosen sufficiently small
80 that the conclusion of Lemma 3 holds, and so that @ ¢ D. Then

Q

waw, 1) = [ Iz, t; & 1) o(d8) + [ I'(w, 1; & &) o(dé) .
Q B,—

Now f]’(a;, t; & 1) o (d€) == o(1) as ¢ —t, +. To see this, observe that from
£,
the proof of Theorem 6 and the definitions of ¢ and ¢, we have

[exp(—u|&]9) - | olde) | < [ expl— p] £]7)- w(d€) + [exp(— | &9 o(de)

R, z,

Rn "

= [ £(a&) + [ n(ag) <3m.

Let d be the distance from z to R,— D. Then using Theorem 1, we find

t

' 1 dzr 1/(2p-1)]
(@, t; & 1) o(d8) | = K (t— t,)—/(27) exp -3 <7t gy } .
(] _ \.‘0

r Lo

’ . 1(|&— & \ee-n]
feXp {—§<“;7t7,0—> I | 0(dd)|.

Z,=0Q
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Let 7' =1, + 1/{ (2u)*»"'} and take t— f, so small that t—f, < 7' —1,. Now
apply Lemma 1 to the Jatter integral with #' =0, ¢ = min (7, 7'), to obtain

[ fp(w’ i; §, to) g(df) ‘ <K (t— t0)~1z/(2p) exp{_« g ( d?v‘ )1/(227“1)} .

A — It

r,—@

. fexp{— I 217/(2p~1)} | o(dg) | .
7,

The integral on the right hand side is bounded. Consequently, as ¢ —f,-4,
the right hand side tends to zero, proving the assertion. Returning to the proof
of the theorem, we observe that by Lemma 3, I'(s, ¢; &, #,) is positive for £ e @.
Thus by the triangle inequality, we find
| wlw, )] + o(1) >| [ T, t; & t) ©(d8)— [ T, t; & 1) o(ds) ],
Q Q

in other words

(15) |, t)] - o(1) > f I'(m, t; & &) 7(d€) f I'(w, 15 &, 1,) o(d8),

(16) |m@n[+mn>ert;anmm&mifww;a%nma
Applying Lemma 3 and Theorem 1, to (15) and (16) yields
an  Jue, )] +o(1)>C (t—t0)~n/(2ﬂ>fr(d§)—1( (twtﬁ)—-n/m)fa(dg),
e
(18) | wlw, O] 4 o(1) > O (t— to)=n/en) f (@) — K (t— toyle» [ 7(ag),

Q

where the positive constants ¢ and K are the same in both (17) and (18). Let
m(Q) denote the LEBESGUE measure of the cube @:

m(Q) = [ w1 (t— 1)]*19) .

Thus, there exist positive constants C; and C, so that (17) and (18) take the
form

(19) | u(w, 1) | + o(1) = C; ©(@)/m(Q) — C: o(Q)/m(Q),

(20) [ula, 1) ] + 0(1) = C; o(Q)/m(Q) — C. 7(Q)/m(Q)

Without loss of generality, we may assume C, > C,, since this may always
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be achieved by increasing the constant ¢, and the inequalities (19) and (20)
still hold.

Define the upper and lower symmetric derivatives of & measure ¢ by setting
respectively

D#*{ = lim sup o D, = lim inf d)

mEY~>0 7”(1) mEy =0 7”(]4)

n (19) and (20), let ¢ — ¢, -~ to obtain the inequalities

(21) 0> 6D*— D¥%g, 0 > 6 D¥*¢— D*r,
(22) 0>d0D,t— Do, 0> 6Dyo— Dy,

where 6 = C,/C, < 1. Note that by (21), if either D*r or D¥c is zero then both
D*r and D*¢ are zero. Similarly, (22) implies that if either D,z or Do is zero,
then both are zero. Assume that neither D*r = 0 nor D*¢ = 0. Then by (21)
D%*g = § D*r > 2 D*g, i. e., Dyo >D,o, which is a contradiction. Hence,
D#7 = D¥g = 0. Similarly, using (22), one shows that D,o = D,7v = 0. Con-
sequently, the symmetric derivatives of ¢ and 7 are zero, which implies that
the symmetric derivative of g is zero. By a theorem of BESICOVITCH [6], see
also RosExBLOOM [21], we may conclude that o(D) = 0. Since .D was an arbi-
trary bounded domain in R,, we conclude that p =0, which proves the
theorem.

6. - Theorems on Isolated Singularities of Solutions to Lu =0.

We begin by proving the following simple lemma.
Lemma 4. Let f be a continuous function defined on B, and let o be a

signed measure. Suppose the integral f f(&) o(d&) converges absolutely. If
R

for every Borel set H, not comammg the point y e R, , o() = 0, then

f 1) o(d&) = f(y) o(D),

where D 18 an arbitrary compact set containing y in its interior.

Proof. ILet D be a compact set containing ¥ in its interior. Let {Dl}
be a decreasing sequence of compact sets contained in D which converge to »
and such that for each I, y is in the interior of D,;. Then note that by the



[15] REPRESENTATION, UNIQUENESS AND ISOLATED SINGULARITY ... 169

hypotheses of the lemma, f f(&) o(dé) - f f(é) . Since D, = D— (D— D)),

n

(D) = o(D). Hence, [ {(&) o(d&) = [ {(y) o(df) + [ [f(&)— ()] o(d&) =

Dy n n

— () o(D) + [ [f(&) — f(1)] 0(a&) . The term [ [{(§) — f(y)] e(d§) =0, I = oo,

L=}

since f is continuous and this proves the lemma.
A modification of the proof of Theorem 7 will enable us to prove the following
theorem.

Theorem 8. Suppose u(z, t) is continuous in the sirip t,<t<< T and
satisfies L = O there. Suppose there exist positive constants m, p such that

J. exp(— u| @ |9 | wx, 1) | de<m, q =2p/2p—1),
R)l

for all t in the interval {, <t << T. Finally, suppose lim w{w, t) =0 for «ll z€ R,
t—-tp4
except at @ = y. Then there exists a constant A such that

ww, 1) = A L(w, t; y, t,) 0 the strip t,<t<<min{T, t, +1/(Au**")}.

Proof. By Theorem 6, there exists a signed measure g such that u(z, ) ==
= f I, t; &, t,) o(d€). By the proof of Theorem 7, o(F) = 0 for every bounded

Rl
domain not containing the point ¥. By Lemma 4, we conclude that w(z, 1) =
= o(D) I'(z, t; ¥, t,), where D is a compact set containing y in its interior. The

assertion of the theorem now follows with A = o(D).

Theorem 9. Suppose u(x, t) is continuwous n the strip ty<<t<<T and
satisfies L == 0 there. Suppose there ewist constants m, w such that

fexp(—‘u]w[q)-[u:v, O de<m, q =2p/@2p—1),

ny

for all t in the interval ty <<t << T. Finally, supposec im u(w, t) = 0 for all € R,
I TR

eweept possibly at x =y and in a deleted neighborhood of ¥, u(w, t) satisfies the

estimate | u(w, t)| <K (@—1)"" 7" for t>1,, where K >0 and 5>0

are constants. Then w(x, t) =0 in the strip 1, <<t < min{T, ty - 1/(Aﬂ2ﬂ—1)}.

Proof. By Theorem 8, there exists a constant A4 such that wu(w, 7) =

= A I'(x, t; ¥, 1,). We show that A= 0. For suppose 4 0. Let [o2—y|<
<% (t— 1)1 /22), Here x is a positive constant and » and ¢ #, are chosen so small
that the conclusion of Lemma 3 holds. Then by Lemma 3, there exists a posit-
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ive constant C such that I'(z, t; y, 1) > C (t— ,)~»/2). Thus by Lemma 3 and
the hypotheses of the theorem, we find A] C (t— t)ni2a) ]A[ K (t— to)~mlen,
or (t— )" < K/C, where K and C are some fixed constants. For ¢— ¢,
sufficiently small, this inequality is impossible. The assumption that A4 == 0
leads to a contradiction and this proves the theorem.

Theorem 10. ZLet u¥(w, t) be continuous in the strip t, <t<< T and sa-
tisfy Lu® = 0 in the strip t, < t < T. Let w(x, t) be continuous in the strip ty<<t << T
and satisfy L = 0 there. Suppose there ewist positive constants m, w such that

&

f exp(—p | @ |9 |ulz, t) | de<m, f exp(— u | 2|9 | w¥@, t) | de<m,
Rll

]E’ll

where ¢ = 2p[(2p— 1), for all { in the interval t,<<t << T. Finally, supposc that

for every point w € R, except at @=1vy, Hm w(w, )= w*(x, t,). Then there exists
i~ t,t
constant A such that

w(m, )= A L'z, t; 9, t,) -+ w*(@, ) in the strip t, <<t << min{T, to -+ ]./(A,u“"l)}.

Proof. Let w(w, t) = u(w, {)— w*(x, t) and apply Theorem 8 to w(z, 1).
Similarly, from Theorem 9 follows

Theorem 11. Let u*(x, t) be continuous in the stript, <<t<< T and sat-
isfy Lu*==0 inthe strip {, << t << T. Let u(x, t) be continuous in the strip t,<< t << T
and satisfy Lu = 0 there. Suppose there exist positive constants m, u such that

fexp(—- ez | ue, )] de<m, fexp(—w wl @l | wie, 1) | de < m,
R .

i By

where g = 2p[(2p — 1), for all ¢ in the interval t,<< i< T. Finally, suppose for

every point x € R, , except possibly x =y, m u(z, t) = u¥x, t,), ond in @
t->tyt

deleted neigborhood of y, w(w,t) satisfies the estimate | w(x,t) |< K (8 —t,) """

for t>1t,, where K >0, v>0 are costants. Then w(w, t) = w*(w@, t) in the

strip ty<t<min{T, t, + 1/(Ap*1)}.

Remark. Theorem 8 can be extended as follows: Suppose u satisfies
the hypotheses of Theorem 8 except that we suppose lim u(w, t) =0 for all
t— 1,
2 € R, except at a finite number of points, say #,, ..., 9. Then there exist
k
constants 4;, ..., A such that w(w, t) = > 4, I'(w, t; ¥, &) .
fes]
The proof of this result is similar to the proof of Theorem 8, but it neces-
sitates & slight extension of Lemma 4. In a similar way, Theorems 9-11 can

also be extended.
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Riassunto.

Si ottengono delle condiziont sollo le quali le soluzioni w(wx, 1) di equazioni paraboliche,
lineari, di ordine superiore, e a coefficienti variabili, si possono rappreseniare nella forma

’llr((l/', t) = fp(fl), t; ":{:: to) O’(dé.) (xERn s t>t0)
R

Qui I'(x, t; & 1) € la soluzione fondamentale dell’equazione parabolica considerata, e Uin-
tegrale & assolutamente convergente. Da questi teoremi di rappresentazione discendono leo-
remt di unicitd e sulle singolarita isolate.



