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Summability in the Space ¢(Y) and the Structure

of Set-valued Additive Functions. (¥%)

1. - Introduction.

Let Y denote 2 reflexive BanacH space and let O(Y) be the space of all
non-empty, closed; convex, and bounded sets of the space Y. The space (YY)
forms a semilinear space under the operation of algebraic addition of sets and
multiplication of & set by a scalar, If V is a neighborhood of zero in a fixed loc-
ally convex topology of the space Y, then the family of sets

N(d) ={BeC(¥Y): BcA+V and ACcB +V}

constitutes a base of neighborhoods for the set A of C(Y). This topology is
said to be the weak (or strong) topology of the space C(Y) if it is generated by
the weak (or strong) topology of the space Y. Let T be an abstract set. Denote
by D the directed set of all finite subsets J of the set 7' ordered by inclusion. A

family of sets 4, (t€T) is said to be summable to an element 4 = >4, if
er
the net S, = > A, (J €D) is convergent to A. Define the norm of a set 4 by
=g

| 4] =sup {]a]: wea}.

2. - Summability in the space C(Y).

In this paragraph we will give conditions for summability in either the strong
or the weak topology of the space C(Y). To this end the following theorem will
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be proven:
Theorem 1. Let a sequence of sets A, e C(X) satisfy the condition that
2 Al < co. Then there ewists a set A € O(Y) such that the series > A, s con-

n=1 n =1

vergent to 4 in the strong topology of the space C(X).

w
Proof. Consider any series of the form > ¥y, where y,€ 4;c Y for
=1

=1, 2, ... Since

Iy <] 4]  and élllfiill<oo,

there exists an element o € ¥ such that >y, —y. This follows from the complet-
i1

eness of the Banach space Y. Consider now the set of all possible sums
Be=fo=um tw+.; med,; i=1,2, .}
One may conclude from the estimation

Lol <l @] + =

Hon < Ay ] 4]+

that

e

| Bl <] 4] +] 4.

Therefore B is bounded. To show that the set B is also convex, consider
any two elements 2%, 2> B. Then:

Consider any two numbers ¢, s > 0 such that s -~ ¢ — 1. Then

=8a + 12 =w Fa, 425 ...,
where
— 1oy 2 A
=8, +tx; € 4,.

This means that the element @ belongs to the set B. Let 4 be the closure
of the set B. Then 4 = B e 0(Y), since B is non-empty, bounded and convex,
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then the set 4 is also non-empty, bounded and convex and therefore is an elem-
ent of the space C(Y). Denote by

-

T

Sy =

M

A,

1

Il

b

and consider any neighborhood of zero in the space ¥, where

V={ye¥: |y|<e}
Let
U={ye¥: |y|<e2}.

One can choose & k in such a way that
2[4 <e2.
=k
One shows now that
AcS, +V for n>k.
Consider an arbitrary element # in B. Then

€r =8, +7'717 Sy =y + ... +mn7 Yo = Tppy -+ Ly +...

and

1
<<

i

Irall < @asa]] 41 #0se | 4l <e2,

ihMs

provided that x is greater or equal to k. This means that the element z bel-
ongs to the set §,, and

z =8, +r,e8, ~U.
Since §, and U are elements of the semilinear space C(Y), then the element
8, -+ U also is an element of (YY) and therefore is a closed set. Since it contains
B, it must also contain its closure, that is the set A.
In the same manner one obtains also the inequality

(a) AcS,+Uchl8,+V for n>k.

To show finally that S,c4d -V for w>% one considers the elements
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s, €8, and 7, = @pyy + Cpyy + ..., @ €A4,. Then
r =8, +r,€B.
Therefore
$p=0—7r,eB+-UCB -}V for wn>k,

and therefore:
(b) S,cB+Vcd+V for n>k.

Conditions (a) and (b) together are equivalent to

8, =3 A;e N (4) it >k,

j=1

and this by definition of the strong topology in C(¥Y) means the series is con-

vergent to an element A in that topology, that is > A4; = A, which concludes
i=1

the proof of the theorem.

A necessary and sufficient condition for a family of sets to be summable in
the weak topology of the space C(Y) will now be given.

Theorem 2. A family of sets A, (xeT) is summable in the weak topol-
ogy of C(XY) to an element of that space if and only if there ewists @ number M >0

such that | > A | < M for all finite J c T.
aEr

Proof of Sufficient Condition. One uses the following

Lemma 1. Let A, (xeT)be as in Theorem 2. Then any family = €4
(e € T) is weoakly summable in Y.

To prove the Lemma 1,let w € 4 (e € T). To show that Y | y'(w) | < 2| v'|
aeJ
for any finite subset J of T and for any linear continuous functional ¢’ on the

space Y. Indeed, consider

Jt={aed: y'(s,) >0}, J-=J—J*.
Then

| Sve)| =loSal<lyll el < iy,
St st s
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and similarly
[2y'() | < M|y] .
e

Therefore

Sy | =3 19e)] + 39| =

J

= Sye)—30e) <| S| +| Sy | <20y

A g

This means that the family of numbers for any linear continuous functional
¥, namely y'(z,) (€ T') is summable. Let us denote its sum by

Ply) =S y'(z,) .

T

It follows from the estimation that

| Py [ <22 y'],
for any y’ in the conjugate space ¥’ of the space Y. Since the functional F(y’),
ag a functional of ¥, is linear on the space ¥’ and it is also bounded, it must be

continuous. Since the space Y' is reflexive, we conclude that it is of the from
F(y') = y'(x). This means that

and hence

[y (@) — X y'@) | <e if J od,

J

for any finite subset J of the set 7' and for some finite subset J, of the set 7.
But this is equivalent to the following condition:

ly'@—x)|<e if J od,.
7
Now consider a weak neighborhood of zero, in the space kY,
V={ye¥, |ymi<e (=1,2 .., K}
Then by similar means as used previously we obtain the following:

lye—S o) <e for i=1,2, .., k JoJ,.
J
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Hence the following condition is satisfied
v—Ywx eV it Jod,,
J
and therefore we have
Sw,ex+V if Jod,.
s

This by the definition of summation means that the elements x, are summable
on the set T in the weak topology of the space Y to the element , i. e.

Suw, =uw.
x
Now let us consider the set of all sums of this form, that is
B={s: velu,, s,e6d}.
T

The set B is bounded. To prove it let us take any element » from the set,
then we have for it the following estimation

| 9'(@) | <22) 9| for zeB, y'eY'.
Therefore according to the BANACH and SrTEINHAUS theorem we have:
I @) <2nr for any xzeB.
But this means that
| Bl <2M.
The set B is also convex, for let «* and @2 be two points of B, then

% R— 1 —_— 2 i
ot =y, @y, = > at, zied
7 e

P

Let t,, 1, > 0 be any two real numbers such that t, +1, = 1. Then
=40 +Lae* =,
T

where

v, =t o Ft,ated, (xe ).
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Hence we see that @ € B. Now let us define the set 4 to be the closure of the
set B. Since the set B is convex, the closure in the weak topology coincides
with the closure in the strong topology. Since the set B is non-empty, convex
and bounded then the set 4 is non-empty, convex, bounded and closed and is
therefore an element of the space C(Y), i. e.

A =B e C(XY).

Lemma 2. Let A be a set compact in the weak fopology of the space ¥
and let V be a closed set in the weak topology of Y. Then the set A + V is closed
in the weak topology of Y.

Proof. To show that the set is closed we will show that it contains the
limit of any convergent net which has values in this set.
Let us consider a net

zped +V, limz, ==z.

To show now that ze 4 - V. The net is of the form
2y =2, Y, vge 4, Yge V.

Since the set 4 is compact, we may conclude that there exists a subset z,
of the net », which converges to an element of the set 4. For this subset we
have
o |
R, =, 1Y,

and

hnlmy:meA.
7

Since a subset of a net which converges to a point ¢ also converges to the

point ¢, we conclude that limz =2z Now we see that the net y, — &, —,
. 3

must be convergent in the space Y and since the set ¥ is closed it must converge

to a point of V, i. e.

. e -
imy, =z—x=yeV.
Y

Now we have

liinzy :ﬁl}l’lmy -4 ]ilynyy =z -4Y.
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This is true since the operation of addition is continuous in the weak topol-
ogy of the space C(Y). We see that z € A, v & ¥V and therefore

g=pdyed + TV

and this means the set 4 -+ ¥ is closed in the weak topology of Y.

Lemma 3. For any weak neighborhood V of zero in the weak topology of
the space Y there exists a finite set J, c T such that

Sw,cV if Jody, 2,64, (xeT).

iy

Proof. Let us consider any neighborhood of zero in the weak topology
of the space Y, that is

V={geY: |ym]<e (=12 ..,k
and let us denote

sup { |y@)|: wed }=a, (=1, 2, .., k).
Since the set 4 is bounded then the numbers «, are finite. Since the function-
al |y )| for # € ¥, considered as a function of w, is continuous in the weak
topology of the space Y and the sets 4, are compact in the weak topology

of the space Y, we conclude that the supremum of the functional must be taken
on at & point of the set 4. Let us denote this point #°. Then

lyal) | = a,, (xel; i=1, 2, .., k).

It follows from the proof of Lemma 1, that for any finite subset J of the set 7
we have the following estimation

Zlyded | <2M|yi]

and therefore

Z a’ioc < 2'2’[” yi“ M
alJ

Then if we let

boc:a’lo: _i_a’Za o +ak(x (“ET)y
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we obilain for any finite subset J of the set 7' the estimation

k
Sho<2M3 |y =T

TS =1

This means that the family of non-negative numbers b _is summable to a
number & and therefore it si true that

|3 b —bl<e if Jod,
acs

for any finite subset J of the set T and for some finite subset J, of 7. But this
can be written in the form:

>h.<e if J o d,.
afs
Now let us consider any family of points #,€ 4, . Then

73 o) =] Zvie) | <Slye) | <Sb,<e i Jod,.
T rls

L 74 iy
Then this implies that

Sua, eV it Jod,, w,ed, (xel).

iy

To show now that the family of sets A is summable in the weak topology
of the space C(Y) to the set 4. Let us therefore consider any neighborhood of
zero in the weak topology of the space Y, where

V={ye¥: lyiy) | < e (t=1,2, .., 5k},
and let
U={ye¥: vy | <ie (=12, .., k}
Vo={yeX¥: lyiy) | < 2 (1 =1, 2 ..., k)}.
We have
VocUCV.

Now using Lemma 3 let us find a set J, with the property that the following
condition holds

z=3 X €7V, if J oJ

r[r

o) z €4
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We will prove that
AcYy A +V if J 2d,
J

for any finite subset J of the set 7. For this purpose, let us select any point
z € B. Then

=3 +>w,c>A +V,.
J

[ J
This means that

BcS A, +U it  J>d,.
J

Since the set > A, is compact in the weak topology and the set U is closed
J
in that topology, we conclude that the algebraic sum of the two sets is a closed

set in the weak topology. Therefore, the weak closure of the set B must be con-
tained in their sum, that is

(a) A=BcYA +Uc XA, +V it J2J,.
J

J

Now let us take any point « and y of the form

ze> A, y=>a,, w ed,.
J T
Then
w+y=z2eBcd,
and
y=>x,eV if Jody.
F

Since the set V is symmetric, then —y € V and this implies that
v =2—yecd +V if J oy,
or which is equivalent

(b) Sd,cA+V it Jod,.
J
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Now conditions (a) and (b) together are equivalent to the condition

>4, eN,(4) if J cdJ,

J
and this by the definition of summation of a family of sets to & set means that
> A4, == A4, where the summation is understood in the weak topology of the
ke

space C(Y).

Proot of Necessary Condition. The proof of the necessary con-
dition of Theorem 2 follows from the following

Theorem 3. If a family A («eT) s summable in the strong or weak
topology of the space C(Y), then there exists a constant I such that

| 240 <,
sy

for all finite subsets J of the set T.

Proof. Since every strong neighborhood of zero of the space ¥ is contain-
ed in a weak neighborhood of zero of the space Y, it is sufficient to prove the
theorem for the weak topology only.

Choose a family 4, summable to an element 4 and let V be any neighborhood
of zero in the space ¥ which is generated by only one linear functional, that is

V={reX: y@|<i1}

Then Z‘A“C A -4V if the set of indexes J is greater than a fixed finite
aEJ

seb of indexes J,. Take an element z€ > 4,. Then x =y +=#, yed, z€V,
aEJ
and therefore
ly@l<lyw| +ly@i<ly'|] 4] +1.
Similarly one obtains | 3 A, | < @ if JocJ. Let M =S| A + i
aEJ /e
Then | YA [N<> A | +| A, | <M for any finite J ¢ T, which proves
aEJy Fials JfTe
Theorem 3.

3. - Structure theorems for set-valued additive functions.

The above theorems are essential to find structure theorams of additive set-
valued functions defined on base-cones in BANACH spaces. See [3], [4], [6]
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where the following theorems have been proven:

Theorem 4. FLet A(t) be an additive function defined on the set S of pos-
itive reals and have values in the space C(Y). Then the following conditions are
equivalent:

() A() is bounded in an open imterval (¢, d);
(b) A(t) is continuous at a point t€ S in the weak topology of C(¥);
(€) A(t) is continuous at a point t€ 8 in the strong topology of C(Y);
(d) A(t) is continuous at every point te S in the strong topology of C(Y);
(e) A(t) is of the form A(t) = 1K for oll te 8, where K = A(1) e aY).
Theorem 5. Let X be a Banach space whit a biorthogonal base system
€ny fu, and let S denote the base cone, thatis S :{weX @) >0 for n=1,
2, } Let O(Y) be defined as previously. Then for avery continuous function A

defined on 8 and with values in C(X), there exists sets K, € O(Y) such that A(zx)=
= > fu(®) K, for all w8, the last series being comvergent in the strong topology

=1

of O(Y).
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