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Set-valued Additive Functions. (¥%)

This work is a continuation of [2]. In [2] we established the structure of
additive set-valued functions defined on the Hamer Rational Base Cone of a
linear space. In particular, the following theorem was proven:

Let X and Y be linear spaces over the field of rationals end let C(Y) denole
the space of all convex sets of the space Y and f,, e, (@€ A) be a biorthogonal
Hamel Base System in the space X. If A(w) is an additive function from the
Hamel Base Cone 8 inlo the space C(X) then A(zx) is rationally homogenuous
and has the following structure A(x) = f () K, for z€ S, where K, = Ale,)
(@ 4). agd

In analysis where one is concerned with spaces in which a topology has
been defined, it is possible to show explicitely the biorthogonal bases system
of such spaces and therefore the representation of additive funetions should
algo be effective. It is therefore natural to investigate additive functions defined
on. base cones generated by biorthogonal topological base systems. To this end
& theorem will be stated which is significant by itself and also shows what kind
of results can be expected.

Theorem 1. Let 4 be a real-valued additive function defined on the set
8§ of all positive numbers. Then the following conditions are equivalent:

(a) A 4s bounded below in an open interval,

(b) A s bounded above in an open imterval,
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(e) A s bounded in an open interval,
(d) A4 is continuous at & point t€ S,
(e} 4 s contimuous at every point of S,

() A s of the form A{) =1t A (1) for all te S.

The equivalence of (d), (e) and (f) is well known. The proof given that (a)
implies (f) is standard and will be deleted.

The next theorem is analogous to Theorem 1. Let ¥ denote a reflexive Ba-
~ACH space and let C(Y) be the space of all non-empty, closed, convex, and
bounded sets of the space ¥. The space C(Y) forms a semi-linear space under
the operation of algebraic addition of sets and algebraic multiplication of a
set by a scalar. If V is a neighborhood of zero in a locally convex topology of
the space ¥ then the family of sets N ={B:4c A4 + V and Bc4d +V }
constitutes a base of neighborhoods for the set 4 in C(Y). This topology is said
to be the weak (or strong) topology of C(Y) if it is generated by the weak (or
strong) topology of the space Y.

Theorem 2. Let 4 be an additive function defined on the set S of posi-
tive reals and have values in the space C(XY). Then the following conditions are
equivalent:

(a) A is bounded in an open interval (¢, d),

(b) A s continuous at o point t€ 8 in the weak topology of (CY),

(e) A s continuous at a point t€ 8 in the strong topology of (CY),

(d) A is continuous at every point t€ 8 in the strong topology of (CY),

(e) A ds of the form A@t) =t K, for all t€ 8, where K = A(1) € G(Y).
To prove the Theorem, one makes use of RADSTRGM’s Theorem:

Let ¥ be any locally comvex Hausdorff space and let C(Y) denote the set
of all compact convex sets of ¥. Let A(t) be an additive function defined on the
set of positive reals S and with values in C(Y). Then there ewists a convex compact
set Kc O(Y) and an additive function f(1) defined on S with values in Y such
that A(t) =t K - f(t) for all t€ 8.

Since Y is reflexive, the members of the space C(Y) are weakly compact.
Thus it follows from the RADSTROM Theorem that there exists an additive vector-
valued function f such that 4(¢) = f(#) - ¢ K. Weak continuity of the operation
of scalar multiplication on the semilinear space C(Y) implies that 4 is weakly
continuous atb 4, if and only if f is weakly (or strongly) continuous at ¢, . This
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establishes the equivalence of (b) and (c). The equivalence of (¢), (d) and (e)
now follows from the equivalence of (d), (e) and (f) in Theorem 1. Note that
A1) = f(1) - K. To prove the equivalence of (a) and (e) one needs only ob-
serve that 4 is bounded on an open interval if and only if f is bounded on an
open interval. The equivalence of (a) and (f) in Theorem 1 now imply the as-
sertion.

Remark to Theorem 1 and Theorem 2.

If instead of the function A(¢) one considers & function defined for { € R+ =
== {t:t > O} then the function A(¢) will be of the same form, that is, A(t) =
=1 A4(1) for te R*. To show this, it is sufficient to show that A(0) = {0},
that is, 4(0) consists only of one point 0. Indeed, one has for ¢ >0.

t ALY = A(t) = A(t +0) = A(f) + A(0) =1 A1) - A(0).

This means that 4(0) c¢{4(1)— 4 (1)} for any ¢ > 0. Therefore || A(0)] < 2¢
|- 4@)[| for any ¢ >0. Hence | A(0)| =0 and we have that ze A(0) if and
only if || @] =0, that is, 4(0) ={0}.

One now proceeds to prove a theorem concerning additive set-valued fun-
ctions which are defined on the base cone in BANACH spaces.

Theorem 3. Let X be «a Banach space with a biorthogonal base system
(€n), (fn) and let S denote the base come, that is, S = {m EX:f(x) >0 for
n=1,2..}. Let Y be a reflewive Banach spacc and let C(Y) = O(Y) be the
space of all non-empty, closed, bounded, convex sets of the space ¥ with its strong
topology. Then for every continuous additive function A defined on S and with values

in O(Y) there exists sets K, e C(Y) such that A(x) = Y f.(@) K, for all z€ 8,

n=1

the last series being convergent in the sirong topology of C(Y).

To prove the theorem one considers the function @ = ¢ ¢, for positive real .
This function is additive and continuous from the set of positive reals R+ into S.
Therefore its composite with the continuous and additive function 4, B,(t) =
= 4(te,) for t e Bt is continuous and additive from R* into O(¥). It follows
from Theorem 2 that B, is of the form A(¢e,) = B,(t) =t K, for ¢t € R+, where

K, e O(Y). For any point € § and », = Y f,(«) ¢;, one has:

i=1

i (%) if E<n

flc (mn) =
0 if kE>n.
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Hence @, € § and @, converges to # in the topology of S. Also
Alw) = A[X fi(w) €] = 3 A[fi@) e;] = 3 filw) K.
je=1 §=1 =1
Therefore it follows from continuity of 4 that #, — « if and only if A (x,) — 4(%)

and A(z) = lim A(»,) = Y fi(x) K;. This completes the proof of the theorem.

By 00 i=1
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