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Error Estimation for Run ge-Kutta Methods

Through Pseudo-iterative Formulas. (%)

1. - Introduction.

Concerning Runee-Kurra formulas for the numerical solution of differ-
ential equations y' == f(z, y) it is objected that the process does not contain
in itself any simple means for estimating the committed errors or detecting
arithmetical mistakes [5]. This objection appears to be universally accepted,
but is unfounded. In fact we shall put into evidence an error estimating internal
property of Runxce-Kurra formulas irrespective of their order. This property
is easy to apply, but weak, and will be improved with the derivation of families
of new Ruxee-KuTra type formulas of fifth order which will be said to have
pseudo-iterative form [6]. In other articles pseudo-iterative formulas of order
n > 6 will be treated [7].

The error estimates provided by the pseudo-iterative formulas of a given
order compare favorably with those obtained from the presently known methods.
In addition, pseudo-iterative formulas offer a more practical way and do not
require any additional labor except that of performing a linear combination
of a few Z's already computed.

However, in all fairness it must be pointed out that all these methods grad-
ually diminish in effectiveness as we progress step by step and that we are
as yet far from possessing a satisfactory rigorous method for error estimat-
ion [2].

(*) Indirizzo: Department of Mathematics, Louisiana State University, New
Orleans, Louisiana, U.S.A. .
(**) Ricevuto: 10-III-1968.
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2. — We are given the differential equation

dy
@ = = 1@, v)

subject to the initial condition # = @y, ¥ = ¥9,. Let y(2) be the solution of
this initial value problem and let ¥(w, -- &) be an approximation to y(z, - h),
where 7 is the considered step-length.

It is known that Ruxem-KurTA type formulas are defined as follows:

»
(2 a) Yml(@o + h) =y, + > w; ks,
fe=0

where m, m = p -+ 1, is the order of the process and

ko =Nhf(@o, %)

(2 b) by = h f(wy + as by ¥y + a1 )
n—1
by ="nh{fwo + anhy, Yo+ 3 byl (n =2, ..., p)
i=0
with
n—1
a'n === z bn i
i=0

We remark that at the first and second stage of (2 b) we can evaluate

(3) ;’jl(wo +h) =y + K
and
~ 1 1
(4) Yo(@y + D) = 9y, + 1—:2‘71’1 ko +2—a—1 ky ,

which represent first and second order approximations to the true value
y(zy -+ h), respectively.

A comparison between the successively improved approximations 7,(xz, + &),
Yal@s - 1) and g7,n(mo -+ k), m >3, will not only permit the detection of gross
errors and arithmetical mistakes if any, but it will provide also some valuable
information concerning the accuracy of the final result, Yml@ + 7).

Let e(w, , ¥o; m; h) represent the error in y,(z, -+ k). Then

Y@y + h) — ?72(m0 4 h) = e(xy, Yo5 25 B).
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In general y,(z, - %), m >3, is a far better approximation to the exact
value y(w, + h) than y,(x, + k). Thus according to accepted usage ([2], p. 52)
replacing in the preceding equation Y@ 4+ h) DY yulw, -+ 1) we have

Yty = ) —=Ta(ay + 1) = ey, yo3 25 1)
or more appropriately
E(”}o: Yo; 25 h) = ?7m($o -+ h) _52(*770 + B),

where ¢{z, , Yo; 2; h) stands for an approximation to (T, Yo3 23 h).

Thus if €(zs, 4,3 2; h) < 5-10-» then we shall accept ¥,(w, -+ 1) as an approx-
imation for y(a, -+ h) correct to p-decimal places and a fortiori y,(m, -+ h)
to be an approximation correct at least to p-decimal places.

In other words the approximate values Yml®o + h) and Yolwe -~ 1) ave accep-
ted to agree with the exact value y(z, -- h) about to the same accuracy as to
which they agree with each other.

With the purpose of strengthening this method of attack to the error estim-
ation problem we tried to imbed in a fourth order RUNGE-KUTTA formula a
third order one. In this manner it was hoped that we would be able to compare a
third order approximation with & fourth order one and thus obtain better error
estimates. However, we have found that such a fourth order Ruxee-KurTa
formula does not exist, for it can be easily shown that the simultaneous presence
of Yy(x, + ) and y,(w, + h) is impossible in any one formula of order »= 4.

After this negative result the investigation of an even more interesting
problem that of the imbedment of a fourth order formula into a fifth order
one, follows naturally and logically. Fortunately as it will be shown in subseq-
uent paragraphs, this imbedment is possible. We may give as an example
the formula:

~ 1
Ys(@ + B) =y, + 336 (14ky + 35k, + 162k, -+ 125k;) ’

=h e, y o) ‘;/vl(mo + ) =y + Iy

1 1 .
by = 7”f(mo + 3 by Yo + 5 k‘o); Yoo + h) = 2y + Iy

=
S

1 1 .
ky = h]‘(a:o -+ 3 hy 9y, + 1 (ky + kl))
~ 1
by =h (@ + hy yo—k, + 2k,), Yg(@g + R) = 7y -+ s (ko + 4y - ky)

2 i
ky = hf(wo + 3 by yo + a7 (Tko -+ 10k, + 7"3))

2 1
g = 1 f(w,, + 150 Yo + 5= 28k, — 125K, + 546%, + 54703~—378k4)>.
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Indeed at the fourth and sixth stage of this formula one can obtain by lin-
car combination of appropriate k's, fourth and fifth order approximations to
Y@ -+ h), respectively. Besides this, as already mentioned, at its first and sec-
ond stages it provides first and second order approximations.

This formula and the related error estimating internal property are readily
extended to systems of first order differential equations. Indirectly but with
equal ease they are extended also to differential equations of order n = 2.

Let us show with a concrete example the effectiveness of this method and
the ease with which it can be applied even in the case of higher order differen-
tial equations.

Consider the second order differential equation (1 — a2)y” — 2 & 4’ -6 y =0,
subject to the initial conditions @ =0, y =— %, ¥’ = 0. This being a Lu-
GENDRE equation it has as solution the polynomial y(z) = (3z%—1)/2. We
find also ¥'(x)==3 #. Thus for a chosen step-size % the latter two functions per-
mit the evaluation of the exact values y(z, - h) and y'(z, -~ h).

Through the use of the above fifth order formula (in its extended form)
we find (with & = 0.0125):

¥y =— 0.499 765 625 003 579 9 J 7. = 0.037 499 999 791 561 13

Us =—0.499 765 625 000 3880, | 7, = 0.037 499 999 379 118 27 .

One can see in a glance that 7, and ¥, have their leading 11 decimal figures
in agreement. Then our method indicates that each of these values and particul-
arly ¥/; have also 11 leading decimal figures in agreement with the exact value.

Indeed this conclusion i true for y ==—0.499 765 625 000 000 0. We thus
can write ¥; = — 0.499 765 625 00 and say that this approximation is correct
to 11 decimal figures.

On the other hand ;7/',1 and i; have only nine leading decimal figures in agreem-
ent. The exact value of ¥’ iz 0.0375 or 0.037 499 999 ... which shows that
truly these two approximate values are in nine decimal figure agreement with
the exact value also.

If these approximate values are too accurate or not accurate enough accord-
ing to given requirements, one may reduce or increase the accuracy of approx-
imations simply by increasing or decreasing the step-size . We shall not enter
into more details at present. These are left to later sections.

Now that we have indicated the feasibility of imbedment of a fourth order
RunNeeE-Kutra formula into a fifth order one and have provided an example
of such a formula, we can give a specific definition to pseudo-iterative formulas.

Definition. Let {k;} (j=0,..., ¢; ¢>6) be the set of incremental
coefficients associated with a certain RunNeE-Kurts formula of order =
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(6 < n < ¢). This formula will be called a pseudo-iterative formula of order » if
with a subset {k;} of {k;} (i =0, ..., p; p<¢q) we can obtain a formula of order
n—1, both formulas being valid at & = wx, -+ h.

Then the above described method can be stated as follows:

Rule. If the approximate values y,(x, - &) and ¥,_,(, + k) have their j
leading decimal figures in agreement, then 7,(w, -~ %) is in j decimal figure
agreement with the exact value y(z, + h).

A more rigorous proof or justification of this rule will be given in a sub-
sequent article.

3. — It is well known that six substitutions or stages are necessary for the
derivation of fifth order RuNGgr-Kurra formulas.
Thus, sinee p == 5, the relations (2 a), (2b) may be written

5
(5 a) Ys(@o-+ ) = Yo + z w; k;
i=0

where

=
s

=T f(@o 5 o)

Fy =Rk f(my + ay by ¥y + a; Ty)

ko =N flag + ax by ¥y + bz’jl ky =+ by ko)

(5 b) ky = h flag + ay b, y, + g o by + by Ky + by ko)

3
ky = h f(my + @y hy Yy, -+ z ba,z‘ k)

=0

4
ks =hf(ey + ashy, 4o + > bs : k)
i=0

with

n—1
=3 bas (n=2,.., 5).
i=0

Then the usual matching procedure between the two truncated power
series representing y(z, -~ k) and ¥s(x,-- k), as defined in (2 a) with p = 5,
gives the following known system of 16 algebraic equations in 21 parameters:

@ Sw =1,

5
(I1-V) z w; @ = e (=12 38, 4),
=1
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1
(VI'VIII) lg’ wW; z a/ bz ;= m (n = 1 3),
1
o e —_ — 2
(IX-X) ng a, Z a;b;; TG (n =1, 2),
(XT) zwaza b”:_()
=2
5 1
(XII) 3w (E Wbt = 5=
i i=1
3 1 i—2 1
(XIIT-XIV) >w 2 tim1 D, Uy byg gy = —e—— (n =1, 2),
i==3 j==3 m==1 ’ 12(1 f 4”’2)
5 7
(X‘T) z W; z bz it (aJ'Ll + (I, z A b7+1 m T Ty
i=3 120
5 i—1 1
(X‘TI) z Zbl12b7 mzanbmn:m'
f==g i=3 m=2 “

Consider the set of incremental coefficients constituted by the first four
stages of (5 b). In this set we let

(6) 4y = @, ==

1
2 =g s bay = ba’lxl—-t, bs’gr.t#(),

where t is a free parameter. Then at the fourth stage of (5 b) the use of the for-
mula

Y@y + h) =y + = [700 42 —1t) by + 2t ks + Xy

will give as it is well known [4] a fourth order approximation to y{z, -- h).

In view of this we assign to the parameters a;, (1 =1, 2, 3), by, and by ;
(¢ =1, 2), of the system of algebraic equations (I-XVI), the values as indicated
in (6). We thus obtain the following new system:

(7.1) Wy Wy - w, - wy A+ wy b wy =1
?

1 : 1
(7.2) 3 (wy 4 wy) + w05 4+ wy @y - w5 ay =3

1 ! 2 ) 2 1
(7.3) y (W 4 wa) + 1w, + wy @] + wy al = 3

1 . . 1
(7.4) 3 (W - Wwa) -+ Wy 4wy @ 4wy 6 = 1

1 . , 1
(7.5) 0 (wy + wy) 2wy + w, @ + w; @) =z,




(7.9)

(7.10)

(7.11)

(7.12)

(7.13)

(7.14)

o -
( 5 Wy ~ Wy ~+ Wy (b4,1 + b4,2) —+ w; (b5,1 + bs,e)J +
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DO | b

1
T (Webyg + w5 bsg) + wy g by 4 = G

111
i %we + Wy 1w, <b4,1”Jx“ b4,2) + w; (05,1 + bs,e) -+
) ] 1

+ wy by s -+ ws bs,s) + w; af b5;4 =13

171 ]

3 12 Wy Wy + Wy (b4,1 -+ b4,2) + ws (b5, + bs,z) -+
+{wy by 5+ w; bs,a) -+ ws aZ b5,4: 30

1 ’ 1

Fyiatinn 5 |Ws T Wy @y (byy + ba) + ws @ (bsy + b5} +

1
Wy @y by g+ w5 a5 (b5 - 4y bs 1) = 3

1 1
I—Gt Wy Z [ws + w, a, (1)4’1 -+ b4,2) -+ Wy g (b5,1 -+ bs’z)] +

1
T Wy @y by + ws ag (bss + a; bsq) = 13

1 1
TR + 3 [ws + w, a; (bsy + bap) -+ w; a; (bs,y -+ bs,a)] +
2 | 2 1
4wy 0y ba,s + ws ag (D55 + @4 b5,4) =10’
1 1 1 2
167 Wy + Z'ws + W, 5 (b4,1 -+ b4,2) + bys| -+

9

1 2 1
-+ ws [5 (b5,1 -+ bs,z) -+ (bs,s -+ ay b5,4)] = 50’

1il 1 1

3 {5 Wy - Wy <2_t b4,2 + b4’3) -+ w; [2_t bs,z -+ bs,s -+ (b4,1 -+ b4,2) b5,4:l} +
‘ 1

+ w; b4,3 b5,4 -y

11 1 1
1 {5 Wy~ W, (2—15 bip + b4,3) + w; [ﬂ bs» + bs s + (b, -+ b4,2) bs;;}} -+

1
+ w5 byg s = 50’
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i 1 11 ) , ,
(7.18) g ws -+ 5w, 5il3 + “4) bao -+ (L 4 @s) bys| +

! l 1 l { ] i
T5Ws 5705 + a5 ) bsp A (1 @5) bs 5 +

|~

A @y F t5) {byy + by -+ 2[)4,3) bs,a] =

o
(=1
-

1

1 1 1 (1 1
(7.16) J 0 bug + 5052 Do + (5 Dap + b) bos| = 35

21

or better

é"w4 bys + ws E): b5,4 -+ (Z—It by + b4,3) b5,4] = 60"

This complex system of 16 algebraic equations is in 16 unknowns. Thus it
appears to be a tight case. It will be shown however, that this is not so, for
two of these equations will be discarded as dependent. This will leave 14 in-
dependent equations in 16 unknowns. Two of the latter, namely a, and a;,
will be taken as free parameters and the remaining 14 unknowns will be ex-
pressed in terms of them.

Consider the system of four equations (7.2)-(7.5). This system is linear in
the unkonowns (w; -+ w,), ws, w, and w;. Let D represent the determinant
of the coefficients, that is:

1
- 1 ty @ 1 1 1 1
2
1 1
1 1 al a:; . 5 1 a, as
=1, =g Oy O )
3 1 al  al 1 1 a; A
1 1
4 4 3 3
6 1 a, a 5 1 a;  a;

The last one being a VANDERMONDE determinant, we find readily:

D ::zaxa,als (@5 — a,) (a; —1) (as"“%> (a4, — 1) (“4"‘%).

‘With the assumption that D 4 0, that is, with

1 1
(8) ay #=0, a5 %0, a5, a1, “5:/'557 as #=1, a, #* a;,

2 )



[9] ERROR ESTIMATION FOR RUNGE-KUTTA METHODS ... 9
the application of CrAMER’s rule to the system (7.2)-(7.5), yields:

4[10 s — 5la, 4 3
(9.2) W, - 1w, = [10 ag uy — 5(a,+ ag) + 3] ’

15(2a, — 1)(2a5 — 1)

10 ay a5 — 10(a, + ag) - 9

(9.3) Vs = e a1

(9.4) Y1 60 aglan— ) @ay — D@, = 1)’
—1

(9.5) Wy =

60 aglas— a,)(2a5 — 1)(ag— 1)

Again the application of CRAMER’S rule to the system of equations (7.6)-(7.8)
yields:

1 (5, — 2)
(9.6) 57 We + Wy + Wy (bay + byp) + w5 (bsg + bs0) = ’1“5‘(‘?"‘;‘4__—1)7
1
(9.7) Wy byz + ws bs 5 =0 —ay’
1
(9.8) W5 by 4 =

60 ay(a,— 1)(2a, — 1)

The combination of (9.5) and (9.8) gives:

as(ay — a)(a; — 1)(2a; — 1)
ig(ag — 1)(2a, — 1)

(9.8") bs,g == —

Multiplying both sides of (7.10) by two and subtracting (7.9) from it we
obtain:

1
(9.10) Wy Gy by g ~+ 05 s bs s + ws @y a5 (2a,—1) b5,4 ~ 120"

The substitution of (9.8) into (9.10) after simplification yields:

oy — 205 — 1

(9.10’) Wy Ay b4'3 + Wy Ay b5,3 - m .
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Solving the system of equations (9.7) and (9.10") for w, b,; and w, bs 5 we
obtain:

1
(9.7") Wy by g == 120(a, — @)’
Ba, — 25 — 1
(9.10") Wy by = :

120(a, — 1) (as — ay)

The substitution, respectively, from (9.4) and (9.5) into (9.7') and (9.10"),
after simplification, yields:

(9.77) b4.3 =% ay (1 —a,) (2a,—1),

'y _aglag— 1)(2a; — 1)(3a, — 2a;, — 1)
(9.1077) bsg = 20— o .

The operation (9.8) times (9.7") gives:

1
W5 b4,3 b5,4 =" 120"
The substitution of the latter into either one of the equations (7.13) or
(7.14) yields:
1 1 ] 1 1
{9.13) 3 Wy - W,y 5 b4,2 + b4,3 T Ws % bs,z -+ bs,s 4 (b4.1 -+ b4,2) b5, AT

‘We thus replace (7.13) by (9.13) and discard (7.14) as dependent on equations
(7.2) through (7.10) and (7.13).

Consider now the system of equations (7.6), (7.9) and (7.11). After the tran-
sposition of w,s to the right side of these equations, the resulting system
can be solved for w,ft, w, (byy + ban + 2by35) and wy (b5, + b5, + 2b5’3 - 2a,-
-bs 4) in terms of a,, a; and w, or actually solely in terms of a, and «¢; since w,
will be replaced by its equivalent expression as given in (9.3). We thus find:

; wy  2[10 aya; — 5a,+ as) - 3]
(969 T 18(2a,— 1)(205— 1)

ay

42Dy ,) = :
(9.9) Wy (b4,1 + b4,2 i b4,3) 60(c; — a)(@g — 1) (20— 1)
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—
; bss - 2by, - 2a, by ) = 5 '
(9-11) /luo (bS,l "} ba’., i ba73 + a-i bo,d) 60(0»5 _ (L4)({15 . ].)(2(15 - 1)

The substitution, respectively, from (9.4) and (9.5) into (9.9) and (9.11),
yields:

(9.9 b4,1 -+ b4,2 -+ 21)4,3 = aj,
(9.117) b5,1 + b5 255,3 + 2a, b4 = as.

The substitution of (9.9') and (9.11) in (7.12) gives:

1 _,_1 _} a§+ ag. 1
e P - Wy - Wy — Wy — == —
1642 ° T4 ° 1y 54 7 20

or

[

wa-.!_ at L. 4
e Wy -+ Wy @y + W @y =

Combining the latter equation with (7.5), we obtain

W, 1
(9.12) =1 (wy + w,) .

The substitution from (9.6') and (9.2) into (9.12) gives:

2[10 a, a5 — 5{a,4 a;) + 3] _ 10a, 05— 5(ag+ a) + 3
15(2a, — 1)(2a; — 1)t 15(2 a5 — 1)(2a, — 1)

or

(9.129) t = 2.
Considering (9.12') the equation (9.6') can be written

4[10 a, a; — 5(a,+ ag) - 3]
15(2a, — 1)(2a5 — 1)

(9.6") W, =

A comparison of (9.6”) with (9.2) yields

(9.29) w, =0.
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Consider now the equation (7.16) which can be written

1 1 1
7 Ws ba,z bs,»4 =% Wy ba,s 55'4”"

37 5 (Ws by + ;5 bs5) .

We have found ¢ = 2 and w; by 5 b5 4 = —1/120. Substituting these values
in the preceding equation and simplifying, we obtain:

1
(9.16) Ws by bsy = 15

— 2(w, b‘,,3 -+ wy b5’3) .

Substituting from (9.7) and (9.8) into (9.16) and solving for bss, We obtain
(9.16") by, = 2a, (2a,—1) (3a,—2).

The equation (9.9') can be written

byp =@ —by,— 2b,5.

The substitution from (9.7") and (9.16') into the preceding equation yields
(9.9M by; =—as (10 af—12 a, + 3).

We consider now (9.13). Substituting from (9.3), (9.4), (9.5), (9.7), (9.8),

(9.12'), (9.16') and (9.9") into this equation and solving for bs ., we find after
simplification:

2a5(1 — 2a5)(2a; — Say a; + ay - 6a, — 2)
- 2a,— 1

(9.13") bs,s

s

Finally, substituting from (9.8’), (9.10""") and (9.13") into (9.11’) and sol-
ving for b; 1, we find

bs; =—a; (10 a;—12 a; + 3).

Now it is worthwhile observing that all the parameters present in the system
of equations (7.1)-(7.16) have been determined as functions of a, and @5; and
this has been accomplished without the use of the equation (7.15). A check
shows that these functions satisfy identically (7.15). Thus it can be concluded
that the equation (7.15) can be discarded as dependent on other equations and
that the totality of these functions constitute a solution set for the system (7.1)-
(7.16).
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Originally we had 16 equations and 21 parameters, to three of which we
agsigned numerical values and two others we made dependent on . Thus
we have eliminated two equations and five parameters leaving us with a sys-
tem of 14 equations in 16 parameters. Hence, there was an excess of two param-
eters. This permited us to express 14 parameters in terms of the other two,
i.e., a; and a; .

Let us consider now the parameters which have been eliminated from the
system (7.1)-(7.16), but are contained in (6). Three of these, namely bo1y sy
and b, , , ave still unknown but can be readily determined. In fact, since f = 2
we find

1 1
bg,lzé_tzi, byy =1—1t=—1, by, =1t =2,
and consequently we have also
by = g — by = i by = 53— bs,l‘_ by, = 0.

Thus all the parameters which figure in the formula (5 a) and in the set of
incremental coefficients (5b) have been determined. For convenience, they
are grouped in the table below:

1
alzazzéy a; =1,
1
b2,1 = bz,o 2; ’
ba,z == 2: b3,1 :”“17 bs,o =0,

1
by = 3 ay (1—a,) (2a,—1),

b4’2 = 2a4 (3“4 - 2) (2“4 - 1) ’

by, =—a, (10 a}—12 a, + 3),
1
byo = @y~ by — b4,2— b4,3 =3 a, (2a,+1) (1 —ay),

as(a; — 1)(2a5 — 1)(a; — a,)
a,(1 — a,)(2a, — 1)

b5,4 == ’
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ag(ag — 1)(2a; — 1)(3ay — 2a; — 1)

by =
5.8 2(1 — @) ’
b 2a5(1 — 2a,)(2a% — Sa, a5 + a; + 6a, — 2)
5 2a, — 1 !
bsy =—a; (10 a; —12 a; + 3),

bsp = 05— b5 1—bs0— b5 53— bs,1
1

— i

Wy =
¥ 760 ag(a;— ay)(2a5 — 1){a; — 1)’

1

W, = ,
L7760 ay(ay— a)(2a, — 1)(ag— 1)’

10 a4 a5 — 10{a, -+ a;) + 9

YT T 0 — Vg, — 1)

. — 1043 as — 5lag + t5) -+ 3]

e = 15(2a; — 1)(2a, — 1) ’

w, =0,

Wy == 1 — Wy — Wy — Wg — W5 .

Furthermore the previously indicated fourth order formula 7,(w, -+ %)
can now be determined. Using ¢ = 2, we have

~ 1
Yoo + h) = Yo -+ 5 (ko -+ 4k + ks) .

This completes the solution of our problem which was the determination
of fifth order RunGE-KuTrA formulas with fourth order formulas imbedded
in them.

4. — Tt is worthwhile observing that b, , b5« Wy and w; can never vanish,

while b,, and bs, vanish only if a, and a; take on the values (6 + 4/¢)/10,

2 1

respectively. On the other hand either b, , or b, o will vanish if a,= 30Ty = o,
respectively.
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The following six cases appear to be interesting:

6 . . 3

L wy, =0 and @, = m (nnplymg @y == Z) ,

. . 8 7
IT. b =1b;5 =0 implying @, = -, @& =1} ,

: . 2 3
IIT. byg =1bs =0 (1mply1ng U =5y G = §) ,

. . 2 2
IV. bsp = wy =0 implying a, = 50 % =15

. . 2 7
V. by, =y == 0 implying @, =2, a; =5/,
VI. W, = Wy == (implying a,= (6 4= 1/6)/10, a;= (6 T 4/6)/10).

They lead, respectively, to the six pseudo-iterative formulas listed below.

Formula I.

~ 1
Ys(@o -+ h) = y, + 2k, + ” (Thy— 12bk, + 64Ek;),
5

ky =k f(zo, ¥o) s g1(@o + ) = Yo - Tog
Ey == h f(@g + 0.5k, 9 + 0.5 k), Yoltig + R) = yo + &y,

ky =N f(my + 050, ¥y + 0.25 (k, + %)) .
~ 1
ky =1 f(mg + By Yo— b1+ 2k), Ya(@y -+ R) =gy + P (ko + 4ky + k3) ,

kEy = hflwy + 0.6 D, y, -+ 0.024(11%, + 15k, — 2k, + k3)) ,

/

)

o = f(ws + 0.75 by ¥y -~ 0.011718T5(18%,. - 24k, + 40k, + Tk, — 25k,)) -

Note that 0.01171875 = 3/256.
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Formula II.

~ 1
Ys(to+ h) =y -+ 504 (69%, + 616k, — 56k, - 875k, — 1000%;) ,
1)
ky =
Iy =
L Same as in Formula I,
ky =
ky =

oo = h f(mo + 0.8, 1, + 0.016(13%, + 10k, 4 24%, + 3%,)),
Ty = b f(@o + 0.7 1, 9o + 0.0875(3%, - 4%, - %)) .

Note that 0.0875 = 7/80.

Formula IIT.

~ 1
Ys(@o+ h) =y, 015k — 0.27 k, - 5 (65ky + 20k; — k) ,

Same as in Formula I,

2 1
Ty :hf(a;o +3 b, Yo + 5z (Thy + 10k + ka)) ,

s = I f(@o + 1.5k, o 4 0.375(ky — 30k, — 12%, L 45%,)) .

Note that 0.3756 = 3/8.

[16]
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or

.k1 ==
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Formula IV.
~ 1
?/5(970’*' h) = Yo -+ gé‘é (14k0 + 357‘73 + 162704 + 125k5) ?

ko ==

v Same as in Formula I,

2 1
ky =h f(wo + 3 hy Yo + 57 (Tky + 10%; + ks)) ’

kg =R f(xy + 0.2 b, y,+ 0.0016(28%, — 125k, -}
-+ 546k, + 54k, — 378E%,)) .
Formula V.
~ 1
Ys(@+ h) = Yo + % (11ky, + 140k, — 567k, -+ 500%;) ,

—

. Same as in Formula I,
by ==

by =

2 1
704=7Lf(.’1)0 +§hy ?/0+é77(7k0+10k1 ‘{“ka))y

s = h f(wg - 0.7, 4 4 0.2478 5y - 0.35 ks, -
+0.0896 ,+ 0.0504 &, — 0.0378 &) ,

ks= h f(@, + 0.7k, 4, + 0.014(177k, - 250%, -
+ 64k, + 86k, — 27k,)) .
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Formula VI.

(18]

-~ 1 _ -
Yo(@g+- h) =y, + 36 [47‘70 + (16 + ’\/b) by + (16_"\/6) ks] s

5

ky =

Same as in Formula T,

ka“—-"‘J

ky = h f(@y + 0.1(6 —+/B) b, y, +

+ 0.002[(93 + 24/8)k, + 4(56 — 114/B)k, + (3 — 84/6)k,]),

ks = h f(z, + 0.1(6 + '\/6)71'7 Yo +

-+ 0.0004[9(29 — 64/6) ky -+ 4(123 — 474 /6)k, -
+ (363 — 32 4/B)k, + 4(96 + 131 4/6) k,]) .

It is worthwhile observing that in the latter formula Wy =Wy = Wy = byy =

= b4,1 = b5,1 =0.

5. — It is known that the complete solution of the system of algebraic
equations associated with fourth order RUNGE-KUTTA method is composed
of four distinet solution sets [4]. One of these, which may be called the general
solution, gives six parameters, from the totality of eight parameters involved
in the method, as functions of @, and @,. The other three sets, which may be
referred to as singular solutions, give seven of the eight parameters as function
of a single parameter which is usually taken as by2 =1t 7 0. In the first part
of this work we used one of these singular solution sets. We shall investigate

now the remaining two sets.
In the first four stages of (5 b) let

DO b=

(10) @ =a; =1, a, =

¢ 3
:1 _—— :1——— .
bso + 2t
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Then at the fourth stage of (5 b) the use of the formula

~ 1 t— 2 2
Yal@o -+ h) =Yo + | ko + by 4 4k, + - ky
6 ? t
will give a fourth order approximation to y(z, - 1) .
Thus we assign now the parameters a, (i =1, 2, 3), oy byyy by, of the
system of algebraic equations (I-X'VI) the values as indicated in (10). The res-
ulting new system is as follows:

(11.1) Wy ~+ Wy + Wy ~+ Wy - w, + wy =1,
1 1
(11.2) (wy -+ ws) + 5 We Wy @y + Wy G5 = 37
1 2 2 1
(11.3) (W - 20g) 4 3 Wy 410, € w6 ==
1 . s 1
(11.4) (wy =+ w5) + 3 Wy + W, + W O = 1’
1 X , 1
(11.5) (w, + w,) + I Wy, +w, @y +ws ap = 59
1 1
(11.6) l:g Wy — 1 T wy + wy (b4,1 -+ b4,3) + ws (bs,l + bs,s)] -+
1 . 1
+ 5 [(w 1 4 w, [)4,2 + s bs,z)] 4 @y [’ws 55,4] =35’
1 1 1 ! !
(11.7) I:g Wy — 1 twy + Wa (byy + bas) + ws (b55 + bs,s)] e
1 , 1
+ i [(wy? 4 0, byp + W5 bs,e)} -+ af [w; b5,4] =12
1 1 ' '
(11.8) [g Wy — 1 tw; + W, (b4.1 + b4,3) T Ws (b5,1 BN bs,a)] +

1 1
-+ 3 [('wat + 2wy b4,2 + Ws bs,z)] + a'i [ws bs,a] :’2’6 s

1 1

1
(11.9) Wy + — Wyt -+ w a4(b’ «{——bé,’2 +b4,3\ +
16 4 ° 4 &g )

O =

1
-+ ws “5(b5,1 + 5 bse + bys -+ ay ba,4) =
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(11.10)

(11.11)

(11.12)

(11.13)

(11.14)

(11.15)

(11.16)

D. SARAFYAN [20]
1 ’ ) ] 1 .
16 wy + 0wyt + w, a, b4,1 Ty b4,2 + b4,3 -+
1 . 1
+ w5 a5 b, + 1 bso + bss + @y bs 4| = 5’
1 1 . : 1 ‘
32 Wy - i Wyt + Wy @G| byy + 3 b4’2 +bis| +
2 i 1 1
+ ws a bs,1 Ty bs,z + b5y + ay b5,4 =10’
1 1 1 2
64 Wy —+ 6 wy B -y [ byy - 5 b4,z + a5

1 2 1
+ ws (b5’1 + 3 bsp + bss -+ a4 b5,4) =35

1 ' 1 1
gwst":‘w4 §b4,2 +th4,3 -+

1 1 1
-+ w; lig bs,z + i t bs,s + ( by + ) b4,2 + b4,3) bs,4] ~od

1 1 1 1 1
g'wat + g W bay + 'wa[g bs 2 + (b4,1 + i by + b4,3) b5,4] =50’

3 1 /(1 1 1/(1
76 Wyt + w4[§ (5 -+ “4) by, + i 1 +“4)tb4,3] ‘}‘wa[g (5%—&5)1)5,2 +

1 1 7
-+ 1 (A + @) b5 5 + (@ + a3) (b4,1 + 5 by,. + bys ) bs,«x] =120’

1
0y b4,3t -+ w5 [bs,s t (b4,2 + 2¢ b4_:;) bs,a] =15

At first approach it appears again that we are dealing with a tight case,
since this complex system is composed of 16 algebraic equations in 16 unknowns.
However, as in the preceding case we shall end up with 14 independent equations
in 16 unknowns. This will permit the determination of 14 parameters as funct-
ions of a, and a; .
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The system of four equations (11.2)-(11.5) is solvable for w, + w;, w,, w,
and wy provided that

1
1 5 , s
1
2 2
1 1 a; a;
pemeeed l :/é 0 .
1 — ad a®
S 4 5
1
4 4
1 G @, a

The latter being a VANDERMONDE determinant, one readily finds:

D :—jzaxi a; (a5 — ay) (“5"*;) (as—1) (44*—%) (@, —1).

=

Thus assuming

1
12) a, + a, and @; 540, a,—1 0, a‘._é#o, (i =4, 5),

we find
o loaa — 10(ay+ a5) + 9

(13.2) Y T e T g — D)

4[10 a, a5 — d(ay+ a5) +- 3]
(13.3) © T T, — DZa— 1)
1 = : ‘
(13.4) W =50 a, (a5 — ag)(20,— 1){a;— 1) =

—1

(13.5) Ws =0

T 50 a (a5 — ag)(2a5— 1)(a5 — 1)

Solving the system of three equations (11.6)-(11.8) for the quantities in
brackets we find:

1 1
We— 7 Wyt + Wy (bay + bag) + ws (b5, + bs5) = m) ’

o =

(13.6)
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2(5a, — 2)
(13.7) Wyt - Wy byg 4+ W5 by = 1520, —1)°
1
60 a, (@, — 1)(2a,— 1) °

(13.8) Wy by g =

The combination of (13.5) and (13.8) gives

ag (a5 — a)(2a; — 1){a, — 1)
as(ay — 1)(2a, — 1)

(13.8") bys = —

The subtraction of (11.10) from (11.9) yields:

2a;+ 140, — 7

(1310) Wy T -+ Wy b4’2 @, -+ W5 bs’g Ay = 30(2(14 —_

The equations (11.6), (11.9) and (11.11) may be written

1 1
1 [y 1] - [704 (b4,1 + 3 bap + b4,3)] +
I 1 1
-+ I:ws (b5,1 + > bs,z -+ bs,a + ay b5,4)] =53 W,
1 : 1
Z[’wl}t] iy b41 i 2‘b40"‘b43 +
1 1
bs 1 5050 + bss + a4 bs 4 =316 Wy
1 Y 1
i [wst] + ag [104 (b4’1 =+ 3 bas + bm)] +
. 1 1o
+ e | ws (bﬁ,l + 5 bs,z T+ by | = 0 32 W0, .

This system is solvable for the quantities in brackets if

1

i 1 1

1 1

- a, as :"(a’:i_a“d) (a’ﬁ_—l)( _'1) #0
4 4

1

i a; al




[23] ERROR ESTIMATION FOR RUNGE-KUTTA METHODS ... 2

In view of (12) this condition being satisfied, we find:

10 ay a; — 10{ay+- ag}-- 9

(13.6") Wyt = 30(as — 1)ag—1) '
b 1 b b B (‘A
Wy 4,1 -+ ’2‘ 4,2 -+ 437 190 (a5 — ag)(ay— 1)(2az — 1)
(13.9) ] . )
or by + 3 b4,2 + b4,3 =3 a,

— ay

1
W (bs,1 T3 bso + bss + a4 b5,4) = 120(a; —aio — D@m= T)

(13.11") J
or bsq -

The substitution from (13.9) and (13.11') into (11.12), yields

S| =

1 -_1_1 . . .
l—ﬁug ! ;wat +w, @ + wy a; =

The combination of the latter with (11.5) gives
1
(13.127%) i 1=, + ;.
Substituting from (13.2) and (13.6') into (13.12’) we find
(13.127) t=2.

Considering the latter, (13,6') becomes

10 ay a5 — 10(ay+ a5) + 9
60(a; — 1)(a, — 1)

(13.6") Wy =

The comparison of (13.2) and (13.6") gives

(13.2") w =0.
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We consider now the equations (13.7) and (13.10); we may write

2(5a, — 2)
[wq Do) + [w05b5,] = 4—) — 210y

15(2a, — 1

2a; + lda; — 7

— 20, .
30(2a, — 1) 8

KA b4,2] ay + [w; bs,z] a5 =

Solving for the guantities in brackets we obtain:

13,7/ b — 3a, — 2
(13.7) 4 0s2 = 30(a; — al{ay — 1)
or
(13.7") b:t;z = 2a, (3a,— 2) (2a,—1) ’
2at — 8a, a; + a5 -+ 6a, — 2
; s b, 1 @5 5 — b0y
(15107 ¥ = 300, — 0@y — Dlas — 1)
or
(13.10") T 2a5(Za; — 1)(2a2 :as%a? + ay - Ga,— 2) _
Lty —

It must now be observed that the equation (11.14) can be constructed by
the linear combination of (13.7), (13.8), (13.9") and (13.7"). Thus (11.14) should
not be considered as an independent equation.

The subtraction of (11.14) from (11.13) yields

1
(13.13) Wyt ba,a + w5t bs,s + ws b4,z b5,4 T

The subtraction of (11.13') from (11.16) yields

1
2w5 t b4’3 b5.4 T e—— '3—6 .

Substituting from (13.8) and (13.12") into (11.16’), we obtain
1
(13.16) by =— & (a;—1)(2a,—1) 0.

Substituting from (13.4), (18.5), (13.8), (13.12"), (13.7') and (13.18) info
(13.13), we find

_ay(2a;— 1)(a; — 1)(2a;— 3a, + 1)
(13.13") by = TR .
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The parameters by sy bazand bs,, bs s, bs s have been determined as functions

of ¢, and @;. The substitution of these appropriate functions in (13.9") and
(13.117) yields

1
bs =3 (10 a®—12 a,+3) ,

1
b5+ =—5 0 (10 a}—12 a;+3) .

>

On noting that ¢ = 2, the parameters b,, and b,, in (10) and the formula
giving ¥,(z, -~ &) become

fl
o

1
Yal@o + h) =4y + s (ko + 4Fy + k) .

We note that all the parameters present in the system of equations (11.1)-
(11.16) have been determined as functions of @, and a; and yet the equation
(11.15) has never been used in this process. A check shows that these functions
satisfy identically (11.15). Thus (11.15)like (11.14) is not an independent equat-
ion. This gives us an excess of two parameters over the number of indepen-
dent equations. As indicated before, this excess permits the expression of par-
ameters in terms of a, and a; .

For convenience these parameters are listed in the following table:

1

(1'1:“3:17 a2:§7

1 3
b2,1 =3 ‘ bao =3

o 1
ba,;’:-" bs,lz—é‘, b3,0:_“§7

1

bas =5 % (@y—1) (2a,—1) 50,

by =2a,(3a,—2)(2a,—1),

>
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1 2 ;
b4.1:——-§(l4(10a4——12a4 7‘3)7

b4,0 = 0y — b4_1 e b4.2 i b4,3 s

aglas — a,)(2a5 — 1)(ay — 1) .

b T 0
e aglag— )20, — 1) 7
a;(2a5 — 1){a; — 1)(2a; — 3a, - 1)
bs,s = ) ?
2(a,— 1)

2a;(2a5 — 1)(2a2 — 8a, a5 - a5 6ay, — 2)

b5‘2 _— 9 H
ay— 1

1

b5,1 = ‘—;as (10 “3“12 a; + 3) ’

bso = @5 —b; 1 — bs— bs s — bs a5

—1
760 a5(as — ay)(a; — 1)(2ag — 1

W )¢O,

1

60 ay(a; — ag)(a, — 1)(2a, — 1) >0

Wy = ,

P 10 @y a; — 10(ay 4 a;) + 9
8 60(as — 1)(a, — 1)  ’

410 a4 a5 — 5(a, -+ a;) - 3]
15(2a; — 1)(2¢, — 1) '

W, ==
w, =0,
Wy = L — Wy — Wy — Wy — Wy .

It is seen that the above set of coefficients is quite similar to the one found
in the preceding case since only the coefficients with subscript 1 and 0 such as
@iy G334 by o, ebe. are different. Then evidently the present formulas will differ
little from the formulas of the preceding case (for the same values of @, and a;),
but since they contain one additional «k » in their fourth stage, it is reasonable
to expect that they may provide approximations which are somewhat less ac-
curate than others.
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At any rate all fifth order pseudo-iterative formulas of the present case have
the form:

ko = hf(2g, o), Tulo 4 1) = o + Ty,
- 1
By =k flwe + Ry Yo+ k), Yoo + h) = yo + 5 (o + Ty,
1 1
ky = hj(mo -+ ;h, y0+§ (3ky + kl)) ,
1 . 1 _
ky =1 f(%’%‘ ky Y, 3z (Foy + Fy—4 7‘72)) y Yalwg 1) =y P (ly 4Ky - Fog) |

3
ky =N f(wo + @y by Yo+ 2 by ki),
0

4 5
ks == h f{wy + az by, y,-+ z bs,z‘ ki), Ys (@ + 1) =9, + wy by + z w, k;,
° 2

where as it is seen w, = 0.

6. — We now consider the last of the three singular solution sets of the fourth
order method, and let, in the first four stages of (5 b),

1
’ byy = Z')3,1 ==

1
(14:) a1:§7 a2:07 a; =1 A 9: !

3 b3’2:t # 0 .

ol w

Then at the fourth stage of (5 b) the use of the formula
~ 1
Yo(@o + h) =y, + 6 [(A—t) by + 4K +¢ ky 753]

will provide a fourth order approximation to y(w, -+ &).

The substitution from (14) into the sixteen algebraic equations (I-XVT)
yields a new system of algebraic equations. Following a method more or less
similar to the ones used in the preceding two cases one finds, after much tedious
work, that this system has no solution.

7. — In Formula I we have w, = w; = b;o = 0. This leaves 18 non-zero
coefficients (out of 21 coefficients) and for this reason we shall say that this
formula involves 18 k.

The four Formulas II-V involve 17 &’s each while the Formula VI involves
only 15 %’s. In spite of this, the latter formula may yield unsatisfactory results.
This is due to the fact that most of its coefficients are irrationals.
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The five Formulas I-V exhibit various advantages relative to each other.

. : . 1
For instance Formulas I and IT each have only one inexact coefficient, 51 and — 501’

respectively. However, Formula I has one more « k¥ » than Formula II. On the
other hand %; which constitutes the last stage of any fifth order formula, in-
herits errors from the preceding 5 stages or &’s and for this reason it is preferable
to attach to it a small weight-factor ( |w;|). From this standpoint, Formula I
is better than Formula IT, and Formula IV is the best of all since the corres-

1
_0040 ~ 1.98 and

2

. . 64
ponding weight-factors for I, II and IV are =1 A~ 1,18,

126
— = 0.37.
336

Note that in the classical N'ysTrons fifth order formula w, = 125/192 ~ 0.65.
For the sake of completeness as well as for the convenience of the reader this
formula is given below:

~ 1
Ys(@ + ) = Yo + 192 (23 ko + 125 by — 81 by + 125 &),

where:
ky =D fl2o, %),

1 1
ky :h]‘(mo—}—gh, yo—{~§ko),

ky=h ( —52-h, yoJ—m(éko—}—le)),
Ies :h]‘(mo +h, Yo+ ~(k — 12k, +15 k,,)) ,
Ity :hf(wo =k, (6k -+ 90 %k, — 50 Lo—{—Sks))
kszhf( -h, —}——7%(6750-{—36751—{—10702—}—8763)).
For the purpose of illustration we consider the boundary value problems:
% = w”fl (m =1, 2, 5)

@, =0, Yo =1,

which have as solutions y = (# 4 1)» and are representative of an infinite
variety of cases or problems.

We shall determine through a single application of the Formula IV the
approximations ¥(w, + h) and ¥z, +- k), Where b =2 (n =0, 1, ..., 15).
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The results which are listed in the various tables below were obtained through
an IBM 7094 computer by using double precision (computations made to 16
figures and final results rounded to 12 figures). For comparison are also listed
the exact values and fifth order approximations ebtained by the use of NYsTROM’S

formula.

h =2

Problem:

Solutions

ERROR ESTIMATION FOR RUNGE-KUTTA METHODS ...

- - J"r - with (0, 1).

1

1

w

W ==

w
n
w
n
K2
n
n
7
k1
n
n

Il

I I
Ll =" < B S = R ]
-

== 12

f
—
SV

14
=15

I

2.000 000 000 00
2.000 000 000 36
2.000 000 002 25
2.000 000 000 00

.500 000 000 00
.500 000 000 10
.500 000 000 65
.500 000 000 00

[ R W R TP

.250 000 000 00
.250 000 0GO 03
.250 000 000 18
.250 000 000 00

o ek bt

1.125 000 000 00
1.125 000 000 01
1.125 000 000 ¢35
1.125 0600 000 00

1.062 500 000 00
1.062 500 000 00
1.062 500 000 01
1.062 500 000 00

1.031 250 000 00
1.015 625 000 60
1.007 812 500 00
1.003 906 250 00
1.001 953 125 00
1.000 976 562 50
1.000 488 281 25
1.000 244 140 63
1.000 122 070 31
1.000 061 035 16
1.000 030 517 58

Formula IV (imbedded) 4th order
Formula IV 5th order

NYsTROM

Exact value

Formula IV (imbedded) 4th order
Formula IV 5th order

NysTROM

Exact value

Formula IV (imbedded) 4th order
Formula IV 5th order

NYSTROM

Exaet value

Formula IV (imbedded} 4th order
Formula IV 5th order

NYSTROM

Exact value

Formula IV (imbedded) 4th order
Formula IV sth order

NYSTROM

Exact value

Same for all four methods
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. 11 1 e .
It is seen that, for h=1, -, 1 and 3 the approximations provided by the

fourth order formula are better than those of the two fifth orders. This may
appear as paradoxical at first but it has a simple explanation. In fact in this
problem the truncation errors related to Ruxeu-Kurra type formulas are nil
[8]. It follows that the discrepancies between the exact values and the values
given by the indicated formulas are due solely to round-off errors. Sinece the
fifth order formulas are much more complex than the fourth order formula
the round-off errors associated with them are much greater.

To be more specific the fourth order formula is of four stages (requires four
substitutions), has eight %’s and involves one inexact coefficient which is 1/6.
The two fifth order formulas are of six stages (require six substitutions) have

. . . . 2 1 1
either 17 or18 k’s and involve either three or four inexact coefficients (§ y =

27’335

11 2 1 1 1 ) ) ~
0 _..,) according to whether we consider the Formula IV or

Y3033 817 75 102

NysTrROM’S formula, respectively. These characteristics indicate that Formula
IV will contribute less to the generation of round-off errors than NYSTROM’S
formula. And above computed results confirm this expectation since with # =1
the round-off error originated from NysrtroM’s formula is 6.25 (= 225/36)

1 1
30 1 and 3 the
corresponding round-off ratios become 6.5, 6 and 5, respectively.

It is worthwhile mentioning that if the sixth stage of Formula IV is written
in the equivalent form of

1
times larger than that originated from Formula IV. With 7 = ,

By =D f(my - 0.2 %, yo— 0.2 % + 0.0032 (14 &, + 273 ky + 27 ky — 189 k),

then the round-off error in ¥,(w, - %) resulting from the use of this different
1 1
version of Formula IV is about doubled when h =1, 5 and 1

On the other hand, the use of Formula VI involving irrational coefficients
yields when & =1:

¥s(@y + h) = 2.019 145 217 65.

The round-off error associated with this value is 53 million times larger
than that associated with Formula IV. As step-length « & » decreases the round-
off errors decrease in magnitude and only when we reach the step-length
h =1/65536 does this formula (VI) start to yield the exact values. With For-
mula IV we begin to obtain exact values with a step-length considerably larger
(precisely 4096 times) since in this case #» = 1/16.
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As far as the problem of estimation of errors is concerned we use the rule
described earlier. For instance with 2 = 1 we found

¥4 = 2.000 000 000 00 , Y5 == 2.000 600 000 36 .

These two values being in agreement with each other up to their 9-th dec-
imal figure, we consider either 7; to have 9 decimal figures in agreement with
the exact value or 10— to be an upper bound for the committed error. We note
that either one of these considerations is true. We may also write y; =
== 2 000 000 000 and accept this value as an approximation correct to ¢ decimal
figures.

The application of this rule to any entry in the above table always leads
to correct results.

This rule gives satisfactory results also in the case where a psendo-iterative
formula is repeatedly applied over an extended interval. For instance in the
considered problem we find as ap approximation for y(1) =2 the following:

) 2.000 000 00013 4th order Formula IV
with b = 1/2: = o
2.000 000 000 20 5th order Formula IV,
B 14 2.000 0060 000 09 4th order Formula IV
o 2.000 000 000 10 5th order Formula IV,
2.000 000 000 05 4th order Formula IV

h =1/8:
=1/ { 2.000 600 600 05 5th order Formula IV,

1 1
Thus in the case where b = 5 or h =7 the rule or method indicates that

=

the computed fifth order approximations have 9 decimal figures in agreement
with the exact value, which is true.

I ~ ~ - . .
However, when I = 3 ¥4 = Y5. In this instance it must be taken into con-

sideration that the last figure of these approximations, which is 5, is obtained
through a rounding operation. For this reason we shall exclude this last figure
in counting the leading decimal digits in agreement and consider ¥, =
== 2.000 000 000 05 as having only 10 leading decimal figures in agreement
with the exact value.

This latter observation is valid for all other approximations, listed below
in the table, for which » < 1/16.




D. SARATYAN [32]

32

h = 2"  Approximations for y(1) =2

7 =0 2.000 000 000 060 Formula IV (imbedded) 4th order
2.000 000 000 36 Formula IV 5th order
2,000 060 000 25 NYSTROM,

7 o= 1 2.000 000 000 13 Formula IV (imbedded) 4th order
2.000 000 000 20 Formula IV 5th order
2.000 000 001 33 NYSTROM,

n o= 2 2.000 000 000 09 Formula IV (imbedded) 4th order
2.000 000 000 10 Formula IV 5th order
2.000 000 000 73 NYSTROM,

% == 3 2.000 000 000 05 Formula IV (imbedded) 4th order
2.000 000 000 05 Formula IV 5th order
2.000 000 006G 38 NYSTROM,

n =4 2.000 000 000 03 Formula IV (imbedded) 4th order
2.000 060 000 03 Formula IV 5th order
2.000 000 000 19 NYsTROM,

n =5 2.900 600 000 01 Formula IV (imbedded) 4th order
2.000 900 600 01 Formula IV 5th order
2.000 000 000 10 NYSTROM,

n =6 2.000 000 009 01 Formula IV (imbedded) 4th order
2.000 000 000 01 Formula IV 5th order
2.000 000 000 05 NYSTROM,

n =7 2.000 000 000 00 Formula IV (imbedded) 4th order
2.000 000 000 00 Formula IV 5th order
2.000 000 000 02 NYSTRON,

n =8 2.000 000 000 00 Formula IV (imbedded) 4th order
2.000 000 000 00 Formula IV 5th order
2.000 000 000 01 NYSsTROM,

n =9 2.000 000 000 00 Formula IV (imbedded) 4th order
2.000 000 000 00 Formula IV 5th order
2.000 000 000 01 NYSTROM,

n =10, ..., 15 2.000 000 000 00 Same for all theree formulas.

In the following tables are listed the exact and approximate values for the
solutions of the remaining two boundary value problems. When four values
are listed consecutively in a box, the first, the second and the third represent
approximations given by Formula IV (imbedded) fourth order, Formula IV
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fifth order and NvysTroM’s formula, respectively; the last one vepresents the

exact value obtained from the analytic solution ¥ = (¢ - 1) (m =2, 5).
ds, 22
Problem: A J, with (0, 1).
dz x4+ 1
== 20 Solutions
7 =10 3.944 4144 444 44 Formula IV (imbedded) 4ih order

3.983 333 334 55 Formula IV 5th order
3.983 068 791 69 NysTrROM
4,000 000 000 00 Exact value,

n =1 2.246 666 666 67 Formula IV (imbedded) 4th order
2.249 393 939 69 Formula IV 5th order
2.249 385 867 45 NYSTROM
2.25G 003G 002 00 Exact value,

W o= 2 1.562 345 679 01 Formula IV (imbedded) 4th order
1.562 484 253 03 Formula IV 5th order
1.562 484 044 20 NyYsTRrROM
1.5662 500 000 00 Exact value,

n =3 1.265 618 992 70 Formula IV (imbedded) 4th order
1.265 624 673 17 Formula IV 5th order
1.265 624 668 65 NYSTROM
1.265 625 000 00 Exaet value,

n == 4 1.128 906 039 00 Formula IV (imbedded) 4th order
1.128 906 244 07 Formula IV 5th order
1.128 906 244 00 NyYsTROM
1.128 906 250 00 Exact value,

o= 5 1.663 476 555 50 Formula IV (imbedded) 4th order
1.063 476 562 40 Formula 1V 5th order
1.063 476 562 40 NYSTROM
1.063 476 562 50 Exact value,

n =6 1.031 494 140 40 Formula IV (imbedded) 4th order
1.031 494 140 62 Formuwla IV 5th order
1.031 494 140 63 NYSTROM
1.031 494 140 63 Exact value,

-1

n = 1.015 686 035 15 Tormula IV (imbedded) 4th order
1.015 686 035 16 Formula IV 5th order
1.015 686 035 16 NYSTROM

1.015 686 035 16 Exaet value,

n =38 1.007 827 758 79 Same for all methods
n == 1.003 910 064 70 » » » »
n = 10 1.001 954. 078 67 » » » »
@ =11 1.000 976 800 92 » » »
n == 12 1.000 488 340 85 » » » »
13 1.000 244 155 53 » » » »
14 1.000 122 074 04 » » » »
15 1.000 061 036 09 » » »

'
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for y(1) =

T

n

n

w

w

(3

T

w

n

W

2

K]

f
'S

I
1]

=10

=11

3.94 444 444 444
3.98 333 333 455
3.98 306 879 169

3.99 764 739 281
3.99 875 591 863
3.99 873 938 543

3.99 990 725 784
3.99 993 984 097
3.99 993 903 766

3.99 999 671 221
3.99 999 769 798
3.99 999 766 652

3.29 999 989 081
3.99 999 992 112
3.99 999 992 062

3.99 999 999 655
3.99 999 999 749
3.99 999 999 780

3.99 999 999 992
3.99 999 999 995
4.00 000 000 013

4.00 000 000 001
4.00 000 000 002
4.00 000 000 010

4.00 000 000 001
4.00 000 000 001
4.00 000 000 005

4.00 000 000 0G0
4.00 000 000 000
4.00 000 ¢00 003

4.00 000 000 000
4.00 0600 000 000
4.00 000 000 001

4.00 000 000 000

4.00 000 000 000
4.00 000 000 001

4.00 000 000 000

Formula IV
Formula IV
NYSTROM,

Formula 1V
Formula IV
NYSTROM,

Formula IV
Formula IV
NYSTROM,

Formula IV
TFormula IV
NYSTROM,

Formula IV
Formula IV
NYSTROM,

Formula IV
Formula IV
NYSTROM,

Formula IV
Formula IV
NYSTROM,

Formula IV
Formula IV
NYSTROM,

Formula IV
Formula IV
NYSTROM,

Formula IV
Formula IV
NYSTROM,

Formula IV
Formula IV
NYSTROM,

Formula IV
Formula IV
NYsTROM,

(imbedded) 4th
5th order

(imbedded) 4th
5th order

(imbedded) 4th
5th order

(imbedded) 4th
5th order

(imbedded) 4th
5th order

(imbedded) 4th
5th order

(imbedded) 4th
5th order

(imbedded) 4th
5th order

(imbedded) 4th
5th order

(imbedded) 4th
5th order

(imbedded) 4th
5th order

(imbedded) 4th
5th order

Same for all formulas .

order

order

order

order

order

order

order

order

order

order

order

order

(34]
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dy 57 .
Problem: a— with (0, 1).
dx z -1
h =2 Solutions
n o= 0 23.222 222 222 2 Formula IV (imbedded) 4th order

7 o==1
n o= 2
n =3
n o= 4
% =25
n =6
n =717
7 =8
n =9
n = 10
n =11
7 o= 12
n =13
n =14

n =15

24.916 666 676 1
26.953 703 812 5
32.000 000 000 0

7.166 666 666 67
7.354 166 668 58
7.436G 779 588 27
7.593 750 000 00

3.033 950 617 28
3.045 697 90917
3.047 969 394 15
3.051 757 812 50

1.801 374 471 36
1.801 908 028 32
1.801 956 531 58
1.802 032 470 70

1.354 058 634 47
1.354 078 903 03
1.354 079 796 94
1.354 081 153 87

1.166 324 861 04
1.166 325 561 02
1.166 325 376 24
1.166 325 598 96

1.080 604 828 55
1.080 604 851 56
1.080 604 851 81
1.080 604 852 18

1.039 677 637 84
1.039 677 638 58
1.039 677 638 59
1.039 677 638 59

1.019 684 435 08
1.019 684 435 10
1.019 684 435 10
1.019 684 435 10

1.009 803 846 55
1.004 892 358 56
1.002 443 791 60
1.001 221 299 32
1.000 610 500 59
1.000 305 213 04
1.000 152 597 20

Formula IV 5th order

NYSTROM
Exact value,

Formula IV (imbedded) 4th
Formula IV 5th order

NYSTROM
Exact value,

Formula IV (imbedded) 4th
Formula IV 5th order

NYSTROM
Exact value,

Formula IV (imbedded) 4th
Formula IV 5th order

NYSTROM
Exact value,

Formula IV (imbedded) 4th
Formula IV 5th order

NYSTROM
Exact value,

Formula IV (imbedded) 4th
Formula IV 5th order

NYSTROM
Exact value,

Formula IV (imbedded) 4th
Formula IV 5th_order

NYSTROM
Exact value,

Formula IV (imbedded) 4th
Formula IV 5th order

NYSTROM
Exact value,

Formula IV (imbedded) 4th
Formula IV 5th order

NYSTROM
Exact value,

Same for all methods

order

order

order

order

order

order

order

order
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Approximations for y(1) = 32

n =

W =

n

P

7

n

w

k24

7

K

w

K2

K1

W

I

-1

=11

13

N =

W

=15

23.222 222 222 2
24.916 666 676 1
26.953 703 812 5
30.492 276 085 0
30.779 015 253 5
31.202 752 235 5

31.883 907247 9
31.900 023 779 6
31.937 764 886 3

31.994 241 153 7
31.994 881 137 6
31.996 885 320 2

31.899 773 230 9
31.999 795 557 5
31.999 876 961 5

31.999 992 052 5
31.999 992 788 2
31.999 995 690 6

31.999 999 738 2
31.999 999 761 8
31.999 999 862 1

31.999 999 992 2
31.999 999 992 9
31.999 999 998 0

32.000 000 000 0
32.000 000 000 1
32.000 000 001 1

32.000 000 000 2
32.000 000 000 2
32.000 000 000 6

32.000 000 000 1
32.000 000 000 1
32.000 000 000 3

32.000 000 000 0
32.000 000 000 0
32.000 000 000 2

32.000 000 000 0
32.000 000 000 0
32.000 000 000 1

32.600 000 000 0
32.000 000 000 0
31.999 999 989 9

Formula IV (imbedded) 4th
Formula IV 5th order
NYSTROM,

Formula IV (imbedded) 4th
Formula IV 5th order
NYSTROM,

Formula IV (imbedded) 4th
Formula IV 5th order
NYSTROM,

Formula IV (imbedded) 4th
Formula IV 5th order
NYSTROM,

Formula IV (imbedded) 4th
Formula IV 5th order
NYsTROM,

Formula IV (imbedded) 4th
Formula IV 5th order
NYSTROM,

TFormula IV (imbedded) 4th
Formula IV 5th order
NYSTROM,

Formula IV (imbedded) 4th
Formula IV 5th order
NyYsTROM,

Formula IV (imbedded) 4th
Formula IV 5th order
NYSTROM,

Formula IV (imbedded) 4th
Formula IV 5th order
NYSTROM,

Formula IV (imbedded) 4th
Formula IV 5th order
NYSTROM,

TFormula IV (imbedded) 4th
Formula IV 5th order
NYSTROM,

Formula IV (imbedded) 4th
Formula IV 5th order
NysTroM,

Samse for all formulas

order

order

order

order

order

order

order

order

order

order

order

order

order

[36]
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Tt is seen that when # == 0, ..., 7, i. e. with 7 == 1 through % = 1/128, the ap-
proximations provided by NysrroM’s formula to y{1) are better than those of
TFormula IV. This is due to the following peculiar situation. In the considered
problem these formulas provide approximations by defeet. The rounding er-
rors help to bring these approximations even closer to the true values. However,
the rounding errors associated with Nystrom’s formula being larger than
those associated with our formula, the former formula yields better results.
Tn other words, in this instance the round-off errors constitute a useful asset
rather than a liability.

However, with decreasing « & » , these errors decrease also so that starting
with % = 8 up to n = 12 (h = 1/256 through h ==1/8192) the superiority of
the Formula IV becomes once again apparent. The Formula IV provides the
best possible results (in the considered problem and relative to the number
of decimal figures retained) for n —= 11, 12,13, 14; NysTtroa’s formula is equally
good only for n == 13, 14.

As far as the accuracy of the obtained approximations is concerned, the
preceding table shows that the application of our rule would indicate in the
worst case (h = 1/16, ¥, ='31.999 773 230 9, Y, = 31.999 795 557 5, y(1) =
= 32.000 0600 000 0) an error about 11 times smaller than the actual error.
And these error estimates are obtained by the use of a simple internal property
of pseudo-iterative formulas without recourse to evaluation of certain partial
derivatives or other laborious processes [1] as presently are needed.

Furthermore as it will be seen in the next section, the pseudo-iterative
formulas and the related error estimating efficient internal property can be
extended with ease to systems of ordinary differential equations and to differ-
ential equations of higher order.

8. — Consider the systems of ordinary differential eqnations of the form

dy?
do

(15)

= f{@, ¥ Y3 oy ¥°) (=1, .., 8)

subject to initial condition yi(x,) == ¥, -

In order to extend the pseudo-iterative formulas and the related error estim-
ating rule to (15) it suffices to regard (1) as a vector equation, the vectors
being y and f[3]. It follows that the pseudo-iterative formulas associated with (1)
must also be considered as vector formulas.

Then the vector equation (1), and associated pseudo-iterative vector for-
mulas represent in compact form the system (15), and the set of pseundo-iterat-
ive formulas associated with the system, respectively.
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Taking for instance s =2 and for the sake of convenience letting y! ==y
and y* = 2, the system (15) can be written

dy
ai :‘fl(fv; Y, z)
(16)
dz
l az = @, y, 2)
with

Y(@%o) = Yo , 2(g) == &y .

Regarding (1) as a vector equation representing in compact form (16), the
pseudo-iterative vector Formula (IV) will then represent in compact form the
following set of pseudo-iterative formulas corresponding to the system (16):

~ 1

Yal2o + h) =y, + G (ks + 4 &5 + k)

> ! 1 2 2 2

24(‘700 - h) =% + E): (750 - 4 7\/, - ka)
)

~ 1

Voo + 1) = yo + o (LA K + 35 B + 162 & + 125 1)

~ 1

Zal@o + W) = 2o oo (4K + 35 + 162 1 125 12)
where

{ ké == Ny fl(mﬂ 1 Yo ’ 20)
ky = h fxe, Yo, %),

2

1 1/ ] 1 | 1 1 { 1 2
I zhkao—,—?jh, ;I/O—;—ék, 20T§k5
o ]- ] N 1
k;:hfz(mo—j—sh, Yo + = ke, zu+;k§),

1 1 1o,
70§=7&f1(wa+§7b, Yo + 7 (kg +H), 20+Z(k5+k§))

1 1 1
15 :7Lf2(mo + 57&, Yy —:~Z(k; + k), =z +Z(k‘2’ - ki)) ,



[39] ERROR ESTIMATION FOR RUNGE-KUTTA METHODS... 39
{ k=T + Ry, Yok + 2K, 2—k +2F)

Bo=nhfwy + b, yo— K -2k, ZH—k 25,

| 2 1 .
By =1 fl('ro 3 hy Y-t = (7 ky+ 10 BTk, 2+ (1 410K - k;))

1 1
k2 == R f? (TO 42 hy, Yo+ 7 (T k410 EI-+E;), 2o- b (Tk +10 12 + 7»‘2)) ,
Ei=nh ]‘1( 1P S— 5000 (28 K} — 125 k! + 546 k} + 54 k; — 378 k),
L 16 50 95 12 L R 2 2 7Q 7.2
%+ To000 (28 ki — 125 k} + 546 K} 4+ B4 £} — 378 k)

2 16 - L ORA T Q7.
B2 =" f~('r - 1—071, Yo+ To000 (28 k;— 125 k] + 546 &y + 54 ky— 378 k),

16 . . )
o Togug (28 ¥ 125 K + 546 K} + 54k5 — 378 kg)) :

The set of formulas (17) permit also the approximate solution of second order
ordinary differential equations whether they are linear or not. Furthermore,
they provide, again with almost no labor except that of taking the linear com-
bination of a few %&’s already computed, error estimates which are as accurate
as those obtained with any other method.

For an illustrative example let us consider the second order differential
equation

(18) A—at)y"—2zy +6y =0

s <t 1
subject to the initial conditions: =0, y=—, y' =0.

This is & LEGENDRE equation having as solution y = (322 —1)/2. We thus
have also 9’ = 3z. The latter two polynomials permit for any x the determinat-
ion of the corresponding exact values y and y’.

Letting ' = 2 and consequently y” = 2’ the equation (18) is reduced to
the system of first order differential equations:

dy
@ =%
dz  2xz — by

dz 11— at

1
with 2 =0, y =gy # = 0.
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In the table below the first and second values listed in any box are the
fourth and fifth order approximations obtained through the use of (17) while

the third listing represents either one of the exact values ¥y, ¥’ .

E=0.1

h = 0.05

h = 0.025

h = 0.0125
h = 0.00625

Fy= ~— 0.484 999 S11 711 410 7
¥s= — 0.485 000 630 384 442 2
y = — 0.4835 0600 000 009 000 0

Fa=  0.299 984 818 200 270 2
Fi=  0.299 999 800 892 103 1
y'=  0.300 000 000 000 000 0

[/
1
!

o= — 0.496 249 997 088 064 7
s= — 0.496 250 009 817 248 ¢
= — 0.496 250 000 000 000 0

@ @il

Jo= 0.149 999 529 620 011 6
Js=  0.140 999 998 097 441 0
y'= 0.150 000 000 000 000 0

Yg=— 0.499 062 499 966 627 6
¥s= — 0.499 062 500 162 385 5
y = — 0.499 062 500 000 000 0

Fa=  0.074 999 985 098 838 76
Js=  0.074 999 999 660 732 45
y'=  0.075 000 000 000 000 00

Ya= — 0.499 765 625 000 388 0
7s= — 0.499 765 625 003 579 9
¥ = — 0.499 765 625 000 000 0

Ja=  0.037 499 999 379 118 27
Fs=  0.037 499 999 791 561 13
y'=  0.037 500 000 000 000 00

o= — 0.499 941 406 250 339 5
J5= — 0.499 941 406 250 504 6
y = — 0.499 941 406 250 000 0

Fi=  0.018 749 999 968 955 91
Fo= 0.018 749 999 980 597 44

y'= 0.018 750 000 000 000 00
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When & == 0.1, apparently ¥, and 7, have only 2 leading decimal figures
in agreement. But since | y;— ¥, | = 0.000 000 8 < 105, we consider 10-¢
as an upper bound for the committed absolute error in ¥; and accept the five
leading decimal figures in ¥; as correct.

When h = 0.05, ¥, and %, have 4 leading decimal figures in agreement.
But [55——%] A 10~% and thus we accept the seven leading decimal figures
in ¥, as correct.

When & = 0.00625 the application of the error estimating rule indicates
that 75 hags its 12 leading decimal figures in agreement with the exact value.

On the other hand, when & =0.1, 0.05, 0.025, 0.0125 and 0.00625 we find
that y, has apparently 4, 6, 7, 9 and 10 leading decimal figures in agreement
with ', respectively.

All this information about the errors can be checked to be true.

We have equally good results even in the case of the repeated application
of formula (17). For instance with % = 0.00625 after 16 applications of (17)
we find at ¢ = 0.1:

:174 =-— 0,485 000 000 135 370 0 5; = 0,299 999 998 527 068 8
5 T - and N T
Y5 = — 0.485 000 000 146 803 0 y; = 0.299 999 998 605 787 8.

The error estimating rule indicates that %, has 10 leading decimals in agreem-
ent with the exact value. Actually it has only 9 leading decimals in agreem-
ent. Furthermore, it indicates 0.000 000 000 011 to be the absolute error in
95 instead of 0.000 006 000 135 which is about 12 times larger. For 5; the rule
indicates 9 leading decimals in agreement with the exact value instead of 8
decimals.

Besides this, for the absolute error

| 7,—¥'| = 0.000 000001394 it gives  0.000 000 000 078

which is 18 times smaller.

Before closing it is appropriate to quote from ([8], p. 109):

«Some authorities (MILNE, GILL) recommend this reduction of equations
of higher order to a system of equations of the first order also for numerical
« purposes; others (Corrarz) take the opposite position, arguing that reduction
«to a first order system increases both the error and the necessary number of
« operations. »

The results obtained through the use of pseudo-iterative formulas undoub-
tedly will bring more weight to the arguments of those who recommend the
numerical solution of higher order differential equations be performed by first
reducing them to a system of first order differential equations.
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Summary.

An internal error estimating property of Runge-Kuita formulas of any order is put

into evidence. This property is easy to apply,but weak, and will be tmproved with the deriv-
ation of a new type of fifth order Runge-Kutia formulas exhibiting iterative proper-
ties, and for this reason referred to as pseudo-iterative Run ge - K utta formulas. These prov-
ide, by quantities that appear dirvectly in the compuiation, 1st, 2nd, 4th and 5th order ap-
proxzimations. The comparison of these consecutively improved approximations readily
yields valuable information about their accuracy, in particular, about that of the fifth order.
The formulas and the method are simple, the approzimations obtained, if not superior, are
competitive with those provvided by known formulas.



