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K. L. Sixer and S. P. Sixgu (%

On Fixed Point Theorems. (*%)

The well known conjecture that if 7 and g are two continuous functions
which map a closed interval of real line into itself and if they commute then
they bave a common fixed point, has been given by Erpow DYER in 1954, by
ALLEN L. SHIELDS in 1955 and by LESTER DUBINS in 1956 independently. The
partial proofs of the conjecture have been given by H. Comen [1], G. JUNGCK
[7]. R. DeMARR ([2], [3],[4]) and others. Similar results for analytic functions
have been given by ALLEN L. SHIELDS [8] and S. P. Smex [9].

Definition. A mapping 7 of a metric space X into itself is said to
satisfy a IiIpscHITZ conditions with LrpscuITz constant o if

AUTx, Ty) < e d(z, y) (@, y € X).

If this condition is satisfied with a LipscHITZ constant « such that 0 < < 1,
then T' is called Contraction Mapping.

Definitions. Two functions f: Z -+ 7 and g: Z — Z are said to be
commutative if fog(z) = gof(z) for all z€Z. A point 2, is said to be common
fixed point for f and ¢ if f(z,) = 2z, = g(z,).

In this present paper we have given a few theorems on fixed points. The
first three theorems are mainly related to commuting functions and fixed
points, and the remaining two theorems are the generalizations of the well
known theorems due to M. EDELSTEIN ([5], [6]). A few examples have been
given in order to illustrate the results.

(*) Indirizzo: Memorial University of Newfoundland, Newfoundland, Canada.
(**) Ricevuto: 21-XI-1967.
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Theorem 1. Let f(2) be an analytic function in & domain D of the com-
plex Z-plane. Let f(2) map a closed unit disk |z|<<1 of Z into itself. Then the
equation f(z) =z has a wunique solution provided | f'(z)|<1.

Proof. The function f(2) maps a closed unit disk |z| <1, of a complex
z-plane into itself. The closed subset of a complete metric space is complete
and therefore | 2| <1 is a complete metric space. Now | f'(z) | <« <1 implies
that f is a eontraction mapping. In fact due to LAGrANGE’s formula for any
By Ry

| fl2y) — f(2e)

== ] (&) —2,) [ <°‘!zl—zz y

where z, <& <#,. By using a well known BANACH contraction principle we
get that f has a unique fixed point, i.e. f(z) =2 has a unique solution.

1 e 1 -
Example. Let f(z) =53 then [f’(z)[ =< 1. Hence f(z) is a con-
traction mapping, and f(z) haS ¢ =1/3 as a fixed point.

Theorem 2. Let f(2) and g(z) map the closed unit disk |2|<1 in the
complex plane into itself in a continuous manner, if they are analytic in the open
disk and if they commute f(g(2))= g(f(2)) for all 2, then they have a common fized
point, provided | f(z)|<1. (A similar theorem has been given by ALLEN
L. suieLps [8] in an entirely different way.)

Proof. We have proved in Theorem 1 that, under the conditions given
in the theorem, f has a unique fixed point, say #,, i.e. f()==2,. Since f(2)
and ¢(2) commute, therefore
f9() = ¢f(2) for all z in Z-plane.
Now
f9(z0) = g7(20) = g(20) or flo(zo)] = g(zq)-
Thus ¢(2,) is a fixed point for f(2), but f(2) has a unique fixed point 2, Ther-
efore g(z,) = 2,, and thus z, is a fixed point for g. Hence the theorem.
Example. Let f(2) be a function from a closed unit disk into itself def-
1
ined by f(2) = 5——5, and g(z) be another function defined by g(2) = 2. Here
[f'(2) | == %< 1. Hence f(2) is a contraction mapping with a unique fixed point

z =1/3. Now f and ¢ both commute, i.e.

f9(2) = gf(2) for all z in Z-plane.
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Thus fg(z) = gf(z) = (1 — 2)/2. The point 2==1/3 is a fixed point for g(2) = 2.
Thus they have a common fixed point say 2 =1/3.

azt+ b x&+
Theorem 3. Lot f(z):c T ad—bes%£0 and g(z):yz‘_l_iy

o 8—By=0 be two lincar fractions. Then f and g have a common fived point,

provided they commute and (¢ — d)* + 4 bc =0.
azt+ b

Proof. The linear fraction f(z) = ad—Dbes0, has a unique

cetd’

 —
fixed point say 2z, = aTci under the condition (¢ —d)® +4be =0, i.e.

(7)) = 2, = (@ — 2d)]e .
Now since f(2) and g(z) commute, therefore

fg(z) = gf(2) for all # in Z-plane.
Now
f9(z,) = gf(2y) = g(2,) or f[g(zo)] = g(%,) .

Thus g¢(z,) is a fixed point for f(z); but f(z) has a unique fixed point 2. Ther-
efore g(#,) = 2o, and thus #, is a fixed point for g. Hence the theorem. In order
to illustrate the theorem we take the following

Example. Let

Z 4 4 — 2
62 + and g(2) = —2et 4

ﬂz):——z—i—2 — s __6

be two linear fractions. Then f(z) and g(2) commute and have a common fixed
point 2, = — 2.

Definition. A mapping T of a metric space X into itself is said to
be contractive if

d(Tw, Ty) < d(z, y),
for all 2, yedX (v #y).

A contractive mapping of a complete metric space X into itself need not
have a fixed point. For example, let X == {w] @ >1} with the usual metric
d(w, y) =|2—y|, and let T: X — X be given by

To = 4+ 1jx.
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However, if T is a contractive mapping of a metric space X into a compact
subset of X, then T has a unique fixed point # € X. We will use this result
in the proof of the following

Theorem 4. If Xis a compact metric space and T2, where p is a posit-
e integer, is a contractive mapping of X into itself, then T has a uwique fized
Poing.

Proof. Let T”? = g. Then we apply the above theorem to g. If z is the
fixed point of g, the relation g(z)= @ gives Tg(z)= T(x), but Tr+1= T(g)=¢T':
therefore g(T'(»)) = T'(z). Hence T'(») is a fixed point of g; the uniqueness of
this point shows that T'(#) = ». In other words, # is also a fixed point of 7.

Definition. A metric space X is said to be well-linked if for every
pair a, b of points of X and for every ¢ >0, there exists a finite sequence
Byy Ty y ..oy By, Of points of X, with ,= @ and @, = b, such that d(z;, v,) < e
for every i<<m. In other words, @ and b can be joined by a chain of steps at
most equal to . '

Definition. A mapping 7 of a metric space X into itself is said to be
g-contractive if 0 < d(w, y) << e, then d(Tx, Ty) << d(z, y).

M. EDBLSTEIN ([5], [6])has given the following theorem: «Let T be a mapping
of a complete well-linked metric space X into itself, and suppose that there is
a real number & with 0 <%k <1 such that d(z, ¥) < ¢ implies that

(1) AT, Ty) <k d(, y).

Then T has a unique fixed point # in X. In case 7' does not satisfy condition
(1) of the above theorem, but a suitable power 77 of 7' satisfies ». Then we
have the following

Theorem 5. Let T be a mapping of a complete well-linked metric space X
into itself and suppose that there is real number k with 0 <k << 1 such that d(x, 1) <
< & implies '

AT 2, Try) <kdz, y).

Then T has a unique fized point x in X.
Proof. The proof of this theorem follows on the same lines as the proof

of Theorem 4.
At the end we want to add the following

Corollary. If X is a well-linked compact metric space and T? is an g-con-
tractive mapping of X into itself, then T has a unique fixed point.
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