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On Generalized Truesdell Polynomials. ()

1. — The classical orthogonal polynomials have a generalized RODRIGUES’
formula [4]

1.1) Po(#) = ——0o D"[ w(w) X+ (D — (fx)

where K, i8 a constant, X is a polynomial in « whose coefficients are indepen-~
dent of » and w(x) is the weight function. If % is a linear function of z, say
@(x), then the operational formulae for these polynomials are given as follows.
Consider
D[w(z) X f(#)] = D [w(®) X*1-((w) X +aX’ + XD)f(@=)],
and by iteration it yields

D[w(w) X f(2)] _H[X(cb(w) + D) +jX']f(#),

where the product has been taken in the operative sense fmd the factors do
not commute.
Also

D [w(z) X» - f(z)] = i ( \) Dr—*(w(x) X») D* f(=)

(*) Indirizzo: Dept. of Maths.,, Regional College of Education, Bhopal (M. P.),
India.
(**) Ricevuto: 14-1I-1967.
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~ thus we have
n 1 n 3

(1.2) TT[X (#@) +D)+ix]= - 3 ()ﬁDW*@u 2) X*) Db
j=1 =0

In particular, if flo) =1,

(1.3) Pow) =— II [X (@) + D) +iX].

‘IlJ

The operational formulae for HERMITE, LAGUERRE and JACOBI polynomials
have been discussed in [1], [2], [9]- It may be remarked here that the method
is equally effective for obtaining operational formulae for non-orthogonal polyn-
omials and functions which admit the Ropricurs’ formula. GouLp and Hop-
pER [6] have discussed the operational relations for generalized HERMITE func-
tions, while CHATTERJEA [3] has discussed them for BESSEL polynomiais. These
relations are easily derived if we use the above technique.

2. - Generalized Truesdell polynomials.

TRUESDELL polynomials [5] are defined as
2.1 Ti@) =a % e" P
(2.1) @) = z - [@*e~#].

ToscANo [10] has also considered the same class of polynomials.
We now define generalized TRUESDELL polynomials by the relation

T

r d\» r
(2.2) Tz (@, 7, P) =@~ (“ e ) [ e=2="].

d
We shall first write some relations concerning the operator @ = d, which

will be useful in our investigations.
Some relations:

(2.3) o) = or z*,
(2.4) e¥(f(@)) = f(w ¢¥) ,
(2.5) o (uv) = i (Z) oty v,

(2.6) e (wv) = ey e¥
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Using (2.4) and (2.6), the generalized relation may be written as

(2.7 e [f(@) fo@) .. ] = fi (we?) fowe) ...,
(2.8) F(6) (a f(w)) = a= F(0 + o) f(2),
(2.9) F(6) (¢ f(w)) = e"® F(S + @ g') f().

The generalized rule of differentiation for this operator is of the form
(2.10) oy f(a(w)) = g ! 7 @ Z (—1)d ()zk—-v o,

For ordinary differentation, see [8].
To prove it, consider

(2.11) " f(x(w) = i A"(w) - f(2),

where the coefficients Aj(z) satisfy the recurrence relation

(2.12) A? (@) = AT (@) 0,2 + 0. 4771 (@)

and
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Adw) =1, Anw) =0 whenever &k <0 or k >n.

It is easily verified that (2.12) holds for # =1, 2, 3, ..., and assume that it
holds for a fixed ». Operating on (2.11) once with respect to d,, we find that

13 n d*
B f(Ew) = 3 AT0) 87 T+ 3 b AR 5 1R) =
nt1 nil ax
Z [AT_ (%) 8,2 -+ 0, A 90)] = VA““( @) 1@,

which establishes the validity of (2.12).
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Again to find the esplicit form of A}(x), we proceed as follows:
Consider (being 2 = 2z(z))

i &’
(SZ (z—“?/)k]y-:z = E A';( ) d_“ 2_7/) ]y—"
i=0

I
IV

A () ! ('”) (@ —g)PTlyms = ! A7 ().

Also

w%whzz(mﬂﬁww%~

Therefore

n (— 1) 2 ; s
A ( ) - k! jg (““1) (7>zk (S j7

which completes the proof of (2.10).

The other formulae of interest which are immediate consequences of (2.10)
are

f(L) 2§y (m ) El@)
(2.13) 590( )“ 2 1) (a‘+1) (fa)e’

"‘I_L_n AN % 70+1(5 'U)j
(2.14) o (@) =3 (k> O 3 (—1) <, + 1) oy

i=0

3. - Some operational formulae.

Consider
w ere’ (g 4)" (2= 6“’”‘r'f(cv)) =
dz

, d\ n-1 7
=o' (o 8)" (oo (@ p rar + D) fi),
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and by iteration, we obtain
r d\=» r .
e ( a) (2% e+ f(@)) = (e —p r a7 + @ D)* f(a).
Again since

@ emr(m d%)n (m“ e-mr-f(x)) =

—& pxr S " d\nr & -—:u.'z;r dy* :
= S0 w) e (o 5) e,

thus we obtain

n

A (70) Tz‘-—-k(m} 7', p) 6k-

M:

(3.1) (e—pra+ D)=

%

Il

In particular, if f(z) = 1,

(3.2) (e—prar +aD)1 = T% (x,r,p).
Let us now define the operator

(3.3) e—pra+~aD =D.

The Liemeniz rule of differentiation for this operator admits the form
(3.4) D(UV)= Y (Z) D Fy F*u .
k=0
It is clear from (3.1) or (3.4) that
2 2
(8.5) D= > (7) @k (1) 6%,
=0 \%

Again
PrE = Pk P,
therefore

(3.6) T:r.,.k (@, 7, P) = D* T: (@, ¥, p) = D" —T‘Z('% T, P).
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Using (2.5), we obtain

k

k ,
en e nenn =3 () T s —p Tl ).

j=0

The use of (3.6) and (3.7) suggest that the inverse relation to (3.5) is

E (K
(3.8) 0F = Zo () I5 (@, 1y —p) D7

i=o0 \J

4. - Generating function.

Starting with Ropricurs’ formula, we have

[~-] tn
X .
z o @, 1y, p) =
n=0 .
o

"

— gm:r
0!

—pzTy — T otd —pz"
6:(.%“6 m:)_*w o Pz @ (0_’;"18 pz)_

i

n

The use of (2.7) shows that

(@.1) >z

n=0

Ty@, 1, p)=expat +par(l—e)].

n!

A little calculation shows that

n

n ‘
@ I p o = 3 () e p T 0.

k=0

Returning to the operational relation (3.1), we have

© tn
¢ fo) = 3 —T; (@, r, p)e“f(),

n=0 0

which with the help of (2.4) and (4.1) yields
(4.3) e® f() = exp [t + p o (L —e)] fwe?) .
In case, if f(z) =1

(44) ¢® (1) = exp[at +p o’ (1—e)].
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The choice of f(z) = e7= yields

(4.5) ¢'® (ev=") = exp [t + par].

‘We also have

P A
(4.6) Z P Ty (@ 7y, p) = explat + par(l—e?)] T(xet, 7, p).

Further, by combining the relation (3.1) and (3.8), we have the transitorj
relation

=30 3 (e n —o
=323 () () zoto n 2207, 0.
Using the relation (4.2), it reduces to the form
(4.7) D, = g ()TS‘? @ 1, p—a) D,

The above relation is analogous to that of GourLp and Horrrr [6].

5. - Expansion of the generalized polynomials.

The use of the relation (2.10) helps us in obtaining the explicit form of
these polynomials. Indeed we have

P 2 (0 r
‘ — — 8
THw, 1, p) = o= 3 (8) on=s §lev e

=5 0) 357 2o () oir

n pi' xrk k n n s s
::kgo k! :Zo ( ) sgk (8) * )
- < pkmrk & 134 k S " n—g H
=35 R () 5 () e

24
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k \ *2t [n
it AT )
2 () 5 () e =o,

being the &k-th difference of a polynomial of degree k—1, and such a dif-
ference is zero whenever the order of the difference exceeds the degree of the
polynomial. Therefore

since

n 7 R

5.1) 1w, 7, 1) = 3P 5 () @i

J

Further, let E»f(») = f(# +#n), and E=1 -+ 4, then (5.1) may be writ-
ten as

n .:.r

Tia, 1, p) = X - L= B)ar,
or more symmetrically
. ! n (___ P a’ A)l n 0 (__.p ar A)k n
Tt 75 P) = lgo k! “ = I:Z:o k! “
Thus we have
(5-2) T5(w, 7y P) = e 4 gn

This relation may very well be regarded as the starting point of the present
study. The generating function for these polynomials is now easily verified.
Indeed we have

==}
r
~' C e @, 7y P) =e7?" e,
w
=0

. . . ot .
Using the relation e* 4 ¢* = ¢ ¢e”"~V the above relation reduces to (4.1).
STIRLING numbers and STIRLING polynomials [7] are defind as follows:

(— 1) & (kN . 1 "
(5.3) S, k) = i ,Zo (1) (}) jn = I Ax 0=,
(5.4) Ax) =2 S(n, k).
k=0
Let

(5.5) Tz, r, —p) = » 8%n, k, v) p*a™,

T

Q
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so that from (5.1)
“ nr X k .
(5.6) 8%, &, 1) 7-- 2 ( 7.) G
Then clearly
(5.7) Tow, 1, —1) = A,(2),
(5.8) S(n, k, 1) = 8(n, k).

Thus 8*(n, k, r) and T3 (z, r,—p) may very well be regarded as the genera-
lized STIRLING numbers and STIRLING polynomials. A little caleulation shows
that

(5.8) S8¥n 4+ 1, ky v) = 8%n, k—1, 7) + (& -+ r k) 8, k, 7).
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