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SURJEET SINGH (¥)

On Tertiary Radicals of an Ideal in a Ring. (%

1. ~ Introduction.

Lesievur and CrorsoT defined the concept of a tertiary radical of any left
ideal and a second tertiary radical of a two sided ideal of a ring [1]. If 4 is a
two sided ideal in a ring R we call the tertiary radical of 4, when A is regarded
as a left ideal, as the first tertiary radical, and the tertiary radical of 4, def-
ined when A is regarded as a two sided ideal, as second tertiary radical. It is
proved in [1] that for any ideal of a ring with descending chain condition (d.c.c.)
on left ideals these two tertiary radicals are equal. Analogous definitions and
results can be stated for right ideals of a ring. For any ring with zero right sin-
gular ideal and ascending chain condition (a.c.c.) on right ideals GorLpI: in
([2], p. 278, Theorem 5.7) proved that the first and second tertiary radical of the
zero ideal (0) are equal. GOLDIE denotes the first and second radieal of (0) by
rad X and Rad R  respectively. We know that any non-zero right ideal
of a ring with a.c.c. on right ideals contains a uniform right ideal. Main purpose
of this paper is to prove following generalizations of GoLpie’s, and LESIEUR
and Croisor results.

Theorem. If R be any ring with zero right singular ideal and every won-
zero vight tdeal of B contains & uniform right ideal, then for anmy two sided ideal
A of R which is a member of family of closed right ideals of R, two tertiary radicals
of A are equal,

Theorem . If R be any ring in which every non-zero vight ideal of B con-
tains a mivimal vight ideal, then rad R = Rad R.

(*) Indirizzo: Department of Mathematics, Kirori Mal College, University of Delhi,
Delhi-7, India. '
(**) Ricevuto: 30-I-1967.
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2. - Preliminary definitions and notations.

By an E-module M we shall always mean a right R-module M. For any
ze M, a€ R, zR*a denotes xRa u {ra}. For any a € R, (a), and (a), denote
the right ideal and the two sided ideal of R generated by a respectively. For
any ring R, with zero right singular ideal, Ls(R) denotes the lattice of all closed
right ideals of R, for any right ideal 4, Cl(4) denotes the closure of 4. If ¥
and N' be two submodules of a module 3, N ¢’ N’ denotes that N'is an essential
extension of N.

Definition 1. For any submodule N of M its tertiary radical & (V)
is defined to be the set of elements « € B such that for each me M, 2 ¢ N,
there exists y in the submodule generated by x with the property that y ¢ ¥
and yR*a C N. &,(0) is denoted by rad M. If 4 is any right of R ring R, then
&,(4) denotes the radical of A which we define, when 4 is regarded as an R-
submodule of E. The tertiary radical of (0), when (0) is regarded as an R-sub-
module of 4, is denoted by rad 4.

Definition 2. If 4 is any two sided ideal of R, the second tertiary
radical &,(4) of A is defined to be the set of elements a € R such that for each
ze R, »¢ A, there exists y € (»), with the property that y ¢ 4 and yR%a C 4.
We denote by Rad B tertiary radical &,(0).

3. - in this section we give characterisations of the tertiary radieal &,()
of any submodule N of an E-module M, and of the second tertiary radical
R.(4) of any two sided ideal 4 of a ring R.

Proposition 3.1. Let N be any submodule of M. If a € R, then a € f,(N)
if and only if there exisis a submodule P of M containing N such that PaC N
and P = P— N is an essential submodule of the difference module M = M— N.

Proof. Let ae R (N). Let P ={rcR|2R*aCN}. P is a submodule
of M containing N. We prove that P is essential in 3. Let X = K— N be
any non-zero submodule of M. Consider any z(s= 0) € K, then ve K and 2 ¢ N.
Thus by definition of &,(N), there exists ¥ in the submodule generated by =
such that y ¢ ¥ and yR*aC N. Then ye K n P and y 5= 0. Hence K n P 5= 0.
This shows that P is an essential submodule of #. Conversely let a € R, such
that there exists a submodule P of I containing N with the property that
Pa C N and P is essential in M. We then show that « e Ry (N). Let we M, ¢ N.
Let K be the submodule of 3 generated by z. Then (K -+ N)— N is a non-
zero submodule of M. Thus P n[(K + N)— N] = 0. Consequently we can
choose ¥ € K such that y % 0 and y € P. Then yR*aC PaC N, y ¢ N. Hence
ae & y(N).
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Now rad M denotes R,(0). By taking N = (0) in Proposition 3.1 we
conclude

Proposition 3.2. If acR, then acrad M <if and only if Pa =0
for some essential submodule P of M.

From Proposition 3.2 we get

Proposition 3.3. If M be any R-module which does mot contain any
proper submodule, then vad M = M7, where M is the right annihilator ideal
of M.

If we regard a ring R as a right R-module, and a right ideal 4 of R as a R-
submodule of R, we get the following

Proposition 3.4. Let 4 be any right ideal of R. If a € R, then a € &K, (4)
if and only if there ewists a right ideal B of R containing A such that EaC A
and B = E — A is an essential R-submodule of the difference module E = R— A.

Proposition 3.5. Let 4 be any two sided ideal of R. If a€ R, then
a€R(4) if and only if there exists a two sided ideal T of R containing A such
that the ideal T = T|A 1is essential in the family of all two sided ideals of
the factor ring R =R/A and TaC A.

Proof. Let acRy(4). Let T = {wecR|aR*aCA}. T is a two sided ideal
of R containing A. To show that 7' is essential in the family of all two sided
ideals of E, let § = 8/A4 be any non-zero two sided ideal of E. We show that
ST 30 Let z(20)eS, then ¢ A, and there exists y € (¥), such that
y ¢ A4 and yR*ac A. Consequently y€ S n T and y 5= 0. Thus S T 0 and
T is an essential two sided ideal of B. Clearly Ta C A. Conversely let a € R,
for which there exists two sided ideal T of R containing A such that T = T/4
is an essential two sided ideal of B = R/A and TaC A. Let » € R with o ¢ 4.
Then [(z), + A]/A is a non-zero two sided ideal of R. Consequently T n
n[@), + A]/A == 0. Thus we choose an element y € (#), such that Y(£0)eTn
n [@), + AJJA. Then yeT and yR*aC TaC 4. Hence a € Ra(A).

By taking 4 = (0) we get from Proposition 3.5 the following-

Proposition 3.6. If acR, then aec RadR if and only if Ta=0
for some essential two sided ideal T.

4. -~ In this section we take a ring R with the following properties:
(P,) R has zero right singular ideal;
(P,) every non-zero right ideal of R contains a uniform right ideal.
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Because of (P,) K contains a direct sum > @ U, of uniform right ideals of B
LS
such that this sum is an essential right ideal of R.

Lemma 4.1, It is rad R = N rad U,
i=r
Proof. Let ae rad R. By Propositions 3.2 and 3.4, there exists an essen-
tial right ideal B of R, such that e — 0. For each i, let U, = U; n B. Then
U,c' U; and U,a = 0. Consequently by Proposition 3.2 ae rad U, and a e

€ nrad U, Conversely let b e N rad U,. Thus b e rad U, for every 4. FHence there
e i€ :
exists a right ideal ¥V, of R such that V,c’ U, and V,b=-0. If B— Sev.,
S
then Ec' R and Eb =0. Again by Proposition 3.2 aerad R. Hence the
lemma follows.

Let & be the family of all uniform right ideals of R. Define a relation ~ on &
as follows: if B,, B,€ &, then B, ~ B, if and only if rad B, = rad B,. This
is obviously an equivalence relation on &. For each B e F, let 8 » denotes the
sum of all uniform right ideals which are equivalent to B. Since R has zero
right singular ideal, thus for any = € R, and uniform right ideal B’ of R, either
2B =0 or B = B’. This shows that § » is & two sided ideal of E.

Lemma 4.2. If B’ be any uniform right ideal of R contained in 8, , then
B ~ B. ‘

Proof. From the definition of §,, we find that § ,containg a direct sum
> @ B;, of uniform right ideal B,, such that B ~ B, and >@® B;c’ 8, Then

ies ier

B'nY>@®B; 0. Let B =B'n3Y ®B,. Then B" is a uniform right ideal

: s ier

contained in B'. Now B C > @ B,;. Consequently B” has non-zero natural
=

projection into at least one of the B;, say Bj, . If 7;: B" — B, be a non-zero
projection, then 7, is a R-monomorphism, since R has zero right singular ideal
and B’ is a uniform right ideal. Consequently B'' ~ 7,,(B") and rad B" =
=1ad 7;(B"). It can be easily proved that for any R-module M, if ¥ be any
essential submodule of M, then rad M =rad N. Now Bc’'B’, and
7,,(B')c’ B/, thus rad B" =rad B', rad 7, (B"”) =rad B, . Hence rad B' =
= rad B,;, =rad B, and B’ ~ B. Hence the result follows.

Now we are in a position to prove:

Theorem 1. Rad R =rad R, and Cl(rad R) is semiprime ideal.
Proof. Obviously rad RC Rad R. Now let aec Rad R, then by Prop-
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osition 3.6 for some essential two sided ideal T of R, Ta = 0. Now by Pro-
position 4.1 rad B = N rad U,. Consider Sy, . It is a non-zero two sided ideal
i1
of R. Thus, Sy, n T %EO and there exists a uniform right ideal V,c 8, n T.
Then V,a=0 and ecrad V;. But by Proposition 4.2 V,~U,, and so
acrad U,. Hence ac nrad U; = rad B. Therefore Rad R = rad K.
€1
Now to prove that 1 (rad R) is a semiprime ideal, let A be any right ideal
of B such that 42 C (11 (rad R). Let 4 ¢ Cl (rad B), then there exists a non-zero
right ideal I contained in A such that I n Cl (rad R) = 0. Consequently I? == 0,
sinee I*°C 1l (rad R) and I2CI. Let K =1 - RI. This K is & two sided ideal
of R such that K2 == 0. Let a right ideal J of R be complement of K in R. Then
K +Jc R and J.K = 0. Then (J + K).I ==0 and I C rad B. This is a con-
tradiction. Hence A C Cl (rvad E), and Cl (rad B) is a semiprime ideal.

Theorem 2. For any two sided ideal A of R belonging to L*(R), and
CUR,(A)) 45 @ semiprime ideal of E.

Proof. Let £ == R/A. By using Propositions 3.2 and 3.4 it can be easily
proved that a € &,(4) if and only if a e &R, (0). Similarly Proposition 3.5 will
give that e R.(4) if and only if @ R,(0). Consequently Ry(4) == Ry(4) if
and only if &R,0) == R(0).

From the fact that B satisfies (P;) and (P,) and 4 € L*(R) it can be easily
proved that E has zero right singular ideal and every non-zero right ideal of B
contains a uniform right ideal. Consequently &,(0) = &,(0), by Theorem 1.
Hence R,(4) = R,(4). Further CL(R,(4)) is the pre-image of the CL(&,(0))
in R. But C1(&,(0)) is & semiprime ideal by Theorem 1, hence C1(&R,(4)) is also
a semiprime ideal of R. ‘

Let R be any ring such that every non-zero right ideal of I contains a minimal
right ideal. Here we don’t suppose that the right singular ideal of E is zero.
It can be proved on similar lines that the Lemmas 4.1 and 4.2 hold if we replace
uniform right ideals by minimal right ideals, we can prove the following

Theorem 3. If R be any ring in which every non-zero right ideal contains
a minimal right ideal and R may not have its right singular ideal to be zero, then
rad B = Rad k.

Author wishes to express his thanks to Dr. P. B. BHATTACHARYA and
Dr. 8. K. JAIN, of Delhi University, for their help in the preparation of this paper.
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