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Summability of Real-Valued Set Functions. (**)

1. - Introduction.

Suppose U is a set, F is a field of subsets of U, R is the set of all real-valued
functions defined on ¥, and m is a nonnegative-valued, finitely additive elem-
ent of E. '

In this paper we define a set W* (see below) of «m-summable» elements
of R and develop basic properties of the «m-summability operator» s (see
below) that we define on W#*, proving, among other things, m-summability
analogues of some theorems of R. HENSTOCK.

Suppose:

1) R* is the set of all nonnegative-valued elements of R.
2) R, is the set of all finitely additive elements of R. |
3) R =R*nR,.
4) C is the set of all elements of R, absolutely continuous with respect
to m.
5) W is the set to which H belongs if and only if:
a) H is in R*.

b) For each number K >0, the integral (section 2)

[, min{E, H(V)}m(V)

(”") Indirizzo: Department of Mathematics, North Texas State University, Denton,
Texas, U.S.A. . :
(**) Ricevuto: 4-I1X-1965.
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exists, and
e) oo > supfu min{K, H(V)} m(V), for O0<K.
6) For each H in W, s(H) is the function on ¥ such that for each V in 7,
s(E)(V) = sup, min{K, H(I)} m(I), for 0<K.

7) W#*is the set of all H in R of the form Y — Y¥’', for ¥ and Y’ in W.

We prove (Theorem 6.1) that if H is ¢n W and P is in R*, then H + P
@5 in W if and only if P is in W, in which case

$(H + P) = s(H) + s(P).

Theorem 6.1 immediately implies (Lemma 12.1) that if each of H', H*, P’
and P* is in W and H'—P' = H*—P*, then s(H')—s(P') = s(H*)—
s(P*).

We show (Theorem 12.1) that W = W* n R*, and if each of H, P and
Pisin Wand H =P—P, then s(H) =s(P)—s(P’').

The consistency implied by Lemma12.1 and Theorem 12.1 makes possible
the following

Definition: If H is in W¥*, then s(H) is the function x, on F, such that
if each of ¥ and Y' is in W and H =Y —Y', then @ =s(¥)—s(Y’).

We demonstrate (Theorem 12.5) that if each of H and P is in W* and H is
bounded, then H P is in W* and, for each V in F,
s(H P)(V) = [, H(I) s(P)I).

We have (Theorem 12.4), as an analogue of a theorem of HENsTOCK [5],
that if each of H and P is in W*, then each of max{H, P} and min{H, P}
is in W* and, for each V in 7, '

s(max{H, P}(V) = [, max{s(H)(I), s(P)(I)}
and
s(min{H, P} (V) = [, minf{s(A)(I), s(P)D)}.

We show (Theorem 9.1) another analogue of a theorem of HENSTOCK [5],
demonstrating that if each of H and Pisin Wand 0<<¢<1, then H? P*¢
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is in W and, for each V in P,
s(Hs Pro)(V) = [, s(H)I)® s(P)(I)-s.

We prove (Theorem 10.1) that if H is in W and 1<Cq, then H? is in W
if and only if f oSENV)Tm(V)=7  ewists, is which case, for each V in F,

S(H)(V) = [, s(H)ID)? m(I)-e.

Finally, we show (Theorem 12.6) that if H is in W*, and for some number
T>0, |H|—T s in R, then

[ m(V)JH(V)
£exists.

2. - Preliminary theorems and definitions.

If V is in F, then the statement that D is a subdivision of V means that D
is a finite collection of mutually exclusive sets of ' whose union is V.

If D is a subdivision of a set V of F, then the statement that F is a refinement
-0of D means that ¥ is a subdivision of ¥, every set of which is a subset of some
set of D.

Throughout this paper all integrals discussed will be HELLINGER [4] type
limits (i. e., for refinements of subdivisions) of the appropriate sums. Thus,
it Pisin R, then [, P(V) existsif and only if for each Vin F, [ P(I) exists,
in which case the function 3 on F defined by M(V) = f yPI)is in B, .

Suppose P is in R.

Suppose V is in F and T is a number such that if D is a subdivision of V,
then |>,P(I)|<7. This implies that if ¥’ is in # and V'CcV, and
L(V’) and G(V') ave the respective sup and inf of the set of all sums Y, P(I),
where D' is a subdivision of V', then —oo<< (V)< L(V)<<oo. We see
that if ¥ is a refinement of each of the subdivisions D and D* of V, theny ) G(I)<
<>, 0N <>, PO, L)<, L), sothat each of f,, G(I) and
[, LI esists, [,&I)<[, L), and [, P(I) exists if and only if
[, &) = [, L(I), in which case [, &)= [, P(I) = [, L(I).

We state without proof & theorem of KOLMOGOROFF [6].

Theorem 2. K. If fUP(V) ewists, then

fUHP(V)l—"]fwP(I)lIZJ'UIP(V)‘J.VP(I)I =0,
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so that if V is in I, then

[,1PD)]
ewists if and only if

L]

cxists, in which case equality holds.
We state an immediate consequence of Theorem 2.K.

Corollary 2.X. If H is in R and bounded and fu P(V) ewists, then
[ BN || POV — [, PD)] =0,
so that if V is in F, then
I, 80 P
exists if and only if
| [ 2w [, Pw)

ewists, in which case equality holds.

Suppose each of a, b, ¢ and d is a number.
‘We state some inequalities:

(2.1) | min{a -+ b, ¢ + d}>min{a, ¢} + min{d, d}.
(2.2) max{a + b, ¢ + d}< max{a; ¢} 4+ max{p, d}.
(2.3) af ¢1~q+ bq di—q < (a - b)a (0 + d)l—q ,

for 0<g<1 and 0<min{a, b, ¢, d}.

‘We adopt the convention that if each of ¥ and 2 is & number, then y/z =0
if 2 =0, and has the usual meaning otherwise.

(2.4) : a? ¢l - p A= > (@ 4 b)e (¢ + d)1e,

for 1<q and O<min{a, b, ¢, d}, providedthat « =0 if ¢ =0, and
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b=0 it d=0.
(2.5) min{a, b}—min{a, ¢}< min{a, b— ¢},

it 0<min{a, ¢, b—o}.

(2.6) | min{a, b}—minfe, d}|<|a—c| +|b—a].
2.7 | max{ a, b}— max{c, d}| <|a—c| +|b—d].
(2.8) |atbr-t—crdi-e| <at|b—d|~e + |a—clede,

it 0<min{a, b, ¢, d} and 0<g<1.

Now suppose that each of ¢ and & is in R, and is bounded.

Suppose F is a refinement of the subdivision D of the set ¥ of F.

(2.1) and (2.2) imply that
— [, (e | + WD) ) < 3, min{g(D), MD}< 3, min{g(I), WI)}<

< 3, max{g(I), MD)}< 3, max{g(D), MD)}< [, (o] +|MD]),
so that each of
[,min{g(D), D)} and [, max{gI), (D)}

exists.

Suppose each of g and % is in R}.

If 0<g<1, then, by (2.3),

0 <391 MIy-e<3, gI)e BI)-e,
so that
[r9tD)e wIp—-

exists.

If 1< ¢ and,for each I in F such that IcV, ¢g(I) =0 if aI) =0,

then (2.4) implies that

3,9 KIp-e< S g(I)e h(I)-e,
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80 that
[, oty wzy—,
exists if and only if for some number 7' and every subdivision E' of V,
2p gD I LT,
in which case f »9(0)¢ R(I)*~2 is the sup of the set of all such sums.

We see that, together with Theorem 2.K., (2.6), (2.7) and (2.8) (with (2.3))
imply respectively the following theorems, which we state without proof.

Suppose each of H and Pisin B and eachof [, H(I) and [, P(I) exists.

Theorem 2.1.
[ min{#(V), PV}~ min{[, A7), [, PD}| =
= [,| max{H(V), P(V)}—max{[, H(), [, P(D}| =0,
so that if V is in F, then
[, min{E(), P(I)}
ewists if and only if
[ymin{ [, BW), [, PO}

exists, in which case equality holds.

A gimilar statement holds for
[, max{HE(), P(I)} and [, max{[, H(), [, P}
Theorem 2.2. If each of H and P is in B, and 0<<q<<1, then
[ 1B POy —[[, DY [[, POF2| =0,
so that if V is in F, then

[, HI)? P(I)-e
exists and s

1, B [, PO
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Throughout this paper we shall often simply write integrals whose existence
or equivalence to integrals is a simple consequence of one or more of the pree-
eding theorems, and leave the proof of existence or equivalence to the reader.

Theorem 2.3. If0<<g<1, each of g and h is an element of RY, and
each of {gk},‘f=1 and {hk},‘:‘;l 18 @ sequence of elements of RT such that

[ Ugn(P)— g | + | Bl 7) — B(V) ) =0
as n — oo, then
[o] 9a7)® B(Py=t— g()e B(VY=e| =0

as  min{n, n'}— co.

We now state two equalities th@t we will need later:
(2.9) a = max{a, 0} + min{a, 0},
(2.10) max{min{a», b}, min{a, c}} = ming a, max{b, c}}

We end this section by adopting the following notational convention: If
an expression is to be written more than once in computations in a given ar-
gument, and is of sufficient complexity, it will be enclosed, when it first ap-
pears, in brackets with a subscript affixed and will be displayed; thereafter
in the argument only the brackets with subscript need be written, e. g.,

[X]r :[ ]"'

3. - Two theorems involving the integral f ,9(I)7 B(I)* for g and  in B} and
1<yg.

Theorem 3.1. Suppose 1<gq, each of f and b is in R, and {gk},:;l
s a sequence of elemenis of R} such thai:

1) If Vis in F and nisa positive integer, then g, (V) =0 1if MV) =0,
and g (V) < g V) = V) as n—oco, and

2) For some number T and every positive integer n, f o Gl VY R(V) e < T
Then: f V) R(V)  exists, and, for each V in F,

[ gn(D* BIV2 = [, f(I)e B(I)*-s as n—oco.
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Proof. We see that if V is in F, then HV)=0 if (V) =0.

We first show that [, f(V)eh(V)i-? exists. Suppose D is a subdivision
of U. There is a positive integer » such that 03 AV) R(V)-1— 3 g (V)¢
h(V)i-1<C1, sothat ZD VY R(V)—e<<1 zD (VY R(V) 2 L1 fvg,,(V)"
MVy-1<1 4+ T, so that [, f(V)eR(V)e exists.

Now suppose 0<<¢ and V is in F. There is a subdivision D of V such
that 0 < f DIy — 3 HI)* M(I)-* < ¢/2. There is a positive integer N
such that if » is a positive integer > N, then 0<3 f(I)?MI)~2— 3  g.(I)?
MIy=e< o2, so that 0< [, A1) WI)=t— [, gu(D)Th(D)=e < [, {I)7 HI)—t —
> o ga(D)? R(I)-7 < ¢. Therefore fvg,,(I)q I - f;,f(I)q R(I)-2 as » — oo.

Theorem 3.2. Suppose each of f and kis in R and {gk}§=1 8 @ sequence
of elements of R} such that:

1) If V is in F and n is a positive integer, then ¢,(V) < gnua(V) = A(V)

as N — co.
2) If n is @ positive integer, then f o V)2/g.(V) exists, and

3) For some number T >0 and all positive z'ntegm's Ny gun— T h 18 in Bt
Then: fl, MVYH(V) exists, and, for each V in F,

[ B2 ga(1) ~ [, MIPHD) as  n— oo.

Proof. Since, for each subdivision D of U, >, V)V 3, M(V)*g(TV),

it follows that [, h(V)2/f(V) exists.

We see that f— Th is in R*.

Now suppose ¢ >0 and V is in #. There is a positive integer N such
that if » is a positive integer > N, then 0 <HV)— g.(V)<< T? ¢/2, so that
for each subdivision F of 7V,

0< 3, Mg D) — 3, MIPHI) =

= ¥, [MD?2/g.(I) {D)IFI) — gulD)] <

<3, T — gu(1)] = T-2[H(V) — g V)] < /2 ,

so that 0< f, h(I)z/g,,(I)*fV MDY < /2. Therefore fv h(I)*/ga(I) —
—>f,, MIZf(I) as n — co. ,
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4. - The integl-al fy Y(I)g(I) for g in RT and Y in K and bqunded.

We begin this section by stating some extensions of previous interval func-
tion theovems of the author [1], [2]. The proofs carry over for the appropriate
elements of R with only slight modifications.

Suppose each of H and P is in R and is bounded, g is in R*, and each of

[,H(V)g(V) and [,P(V)g(V) exists.
Theorem 4.1. [, H(V)P(V)g(V) ewists. ,
Theorem 4.2, If H is in Bt and 0 <, then fUH(V)‘ g(V) ewists.

Theorem 4.3. If for some number T >0, H-—T isin R*, then for
each V in F, ng(I)/H(I) exists and s fyg(I)2/LH(J) g(J).

We end this section by stating a theorem which we shall use subsequently.

Theorem 4.4. If h is a bounded element of K, {hk};:l 18 @ sequence
of bounded elements of R, and L is a bounded element of R such that for each pos-

itive integer n, f o L(V) ho(V)  exists and f o (V) —WTV)]| =0  as n— oo,
then [, L(V)R(V) emists, and, for each V in F, [ T halX) — [, L(T) ()

a8 n-—>o0.

5. - Some absolute continuity and convergence theorems.

Suppose @ is in W.
We state the following lemma without proof:

Lemma 5.1. s(Q) is in R and
[,1s@ () — [, min{E, QD}m(I)| >0 as Koo,

so that s(Q) is in C.
We state a previous theorem of the author [3].

Theorem B5.A. If h is in R, then the following two statements are

equivalent:
1) b is in C.
2) If, for each V in I,
g(V) = sup [, min{K m(I), WMD)}

for 0 <K, then g is h.
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Theorem 5.1. If 0<K and V is in F, then
[rmin{K, QI)}m(I) = [, min{K m(I), s(Q)(I)}.

Proof. II K<K, then [, min{K, QI} mI) = |, min{FK,

mm{I(’ )}} m(I) = f mingK m(I), |, min{K', Q(J)} m(J)}}, and

< [, min{K m(1), (@)D} — [, minK m(1), [, minfK’', QW)} m)} <

< [,1s(@@ — |, mm{K' QJ)} mJ)| -0 as K —oo. Therefore
[, min{E, QI)}nuI) = [ , min{E m(I), s(Q)(I)}.

6. - The addition theorem for W.

In this section we prove the first theorem stated in the Introduction.
We begin with a lemma.

Lemma 6.1. Suppose B is & bounded element of R and 0 < K. Suppose
that for each V in T,

1) L(V) and G(V) are, respectively, the sup and inf of the set of sums >,B
m(I), where D is a subdivision of V.

2) LX(V) and G*(V) are, respectively, the sup and inf of the set of sums
2, min{K, B(I)}m(I), where D is a subdivision of V.

Then
[oZ¥V) = [, min{& m(V), L(V)}, [o @4(V) = [, min{& m(V), (7}

Proof. Suppose 0<e.

There is a subdivision D of U such that if B is a refinement of D,
then | [, min{E o), L(V)}— 3, min{& m( V), LV} < o and
| [o ZHV) = Z, L5 V) | < /4

For each V in D, there is a subdivision 8, of V such that 0 << IZ™(V)—

2, min{® m(I), B(I) m(I)}< c/(4 M), where ﬂ[ is the number of elements
of D so that 0 <%, (L*(I) — min{K m(I), B(I) m(I)}) < ¢/(4 M) and therefore
0<3,3,, (L*1) Imn{K m(I), B(I)m(I)})<c/4, which implies that

—o2< [, I¥V)—[3, >, min{K m(I); B(I) m(I)}], < ¢/2.
Now

[ ]1 [ZD ZS mm{K m(I): I)}]a
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and —ed<[ ]— fumin{K m(V), L(V)}< /4. Therefore

—30fd <[ To—[ h—[[, min{E m(¥), L(V)}— [, L*(V)]< 3.
Now, for each ¥ in D there is a subdivision S, of ¥ such that 0 < L(V)—
ES,V B(I) m(I) < ¢/(4 M) so that

0<[3, 3 {LID)— BU) m(I)}],< o4
and therefore
0 <[3, X min{K m(I), L(I)}],—
[3, 2 min {K m(I), BI) m(I)}, <[ J.<c/+.

[ ]5 < [zl) ZS;, L*(I)]sa

— e <[, IHV)—[ J,;< e/t and —ojd< [, min{E m(V), L(V)}—[ ], < ¢/t
Therefore — 3¢/ < [ J,—[ 1, + [,Z*V)—[ I, +[ 1, — [, min{ Em(V),
L(V)} <3¢/, so that —3ed<[ J,—[ J,—I[[, min{E m(V), L(V)}—
[ Z¥(7)]< 3¢/t ; ‘
Therefore [, L*(V) < [, min{K m(V), L(V)}< [, (V).
Therefore fumin{K m(V), L(V)} == J'U L*(V).
In a similar fashion it follows that f s @HTV) = f z71111'11{1{ m(V), GV )}.
We now prove Theorem 6.1, as stated in the Introduction.

Proof. We first observe that if each of X, X', X* A and B is a number
such that 0 <min§A, B, X, min{X', X*}— X%, then min{X, 4 + B} =
= min{X, min{X’, 4} + min{X*, B}

Firgt, suppose P is in W.
Suppose each of K, K' and K* is a number such that O<min§K,

min{K’, K*}— K}, and V is in 7.
[[, min{K m(I), [, min{K’, HJ)}m(J) + [, min{K*, PWJ)} mJ)}], =
— [, min{E m(I), min{E', AI)}m(I) + min{K* P(I)} m(I)} =
= f , min{K, min{K’', H(I)} + min{K*, P(I)}} m(I)=
= [, min{K, H(I) + P(I)}m(I).

Now 0<[,min{K m(1), s(H)I) +s(PYD}—[ L <sEXV) -+ s(P)(V)—
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[, min{E’, BID)}m(I) + [, min{K*, P(I)}m()]—~0 as min{K', K*} —
— co. Therefore

[ » min{E m(I), s(H)I) + s(P)(I)} = [ ymin{K, H(I) + P(I)}m(I).

From Lemma 5.1 it follows that s(H) - s(P) isin O, so that from Theorem
5.A, f ymin{K, H(I) + P(I)}m(I) = f y min{K m(I), s(HNI) + s(P)(I)}
—=S(H)(V) +s(PYV) as K —>oco. -

Therefore H -+ P is in W and S(H ~+P) = s(H) +s( ).

Now suppose that H -+ P isin W.

Suppose each of K, K' and K* is a number and 0 < min{K, min{K’, K*}

4 J o min{E, H(V) + P(V)}m(V) =
= UrmingK m(V), min{I’, H(V)}m(V) + min{K*, PO m(P),.-
If D is a subdivision of U, then |
| 3, mindE m(V), min{E’, H(V)}m(V) + min{K* P(V)}m(V)}—
[3, min{E m(V), [ [, min{&’, ED}m(I)] + min{K*, PV)}m(V)}], |<
<Z§l min{K', H(V)}m(V)— [, min{K', H(I)}m(I)],
so that, by Theorem 2.K.,

U minE m(v), [, min{&", BO}m(D] + min{K*, PV)}m(V)}],

exists and is [ J,.
Again, if D is a subdivision of U, then

0 <[¥, minfK m(V), s(H)(V) -+ min{E¥, P(V)}m(V)§]5——[ L<
< 3, [s(H)(V)— [, min{E', H(I)}m(I)]= s(H)T)— f min{K’, H(V)} m(V).

Now suppose ¢ >0. There is a number K’ >K such that 0 < s(HWU)—

[y min{K', H(V)}m(V)<e/2, so that O0<[ |,—[ 1,<¢/2. There is a
subdivision ¥ of U such thatif D is arefinement of &, then ¢/2 > |[ ,—[ L| =
=|[ L— [, min{E, H(V)+P(V)}m(V)|, and therefore |[[ J,— [, min {X,

H(V) + P(V)}m(V) | <e.
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Therefore

[, min{K m(V), s(H)(V) + min{K*, P(V)}m(V)}],

exists and is J' Umin{K, H(V) +P(V)}m(V).
Foreach Vin Fand K" >0, welet

L(K")(V) and GEK")V),

denote respectively the sup and inf of the set of all sums 3, min{E", P(I)}m(I),
where ¥ is a subdivision of V. ; :
We show that

[ , minfK m(7V), s(ENV) + LETH, =[ 1,-

Suppose ¢ >0. There is a subdivision D of U such that if E' is a refinement
of D, then |[ ,—3. min{Km(V), S(HNYV) + LE*(V)} <c/4  and
[ T— 3, min{K m(V), s(H)(V)+ min{K* P(V)}m(V)}|<¢/4. TFor each
V in D, there is a subdivision §, of V such that 0 << L(K*)( )—stmin
{K*, P(I)}m(I)< ¢/(4]), where I is the number of elements of D, so that

0 <[3, 3, SLE*(I) —min{K*, PD}mI)}],< e/t
Now
[ 3—[3, 2, min{E m(I), s(D)I) + LE*D], | < of4.
0 L—125 2, fmin{ I m(T), s(E)(I) + min{K*, P(D)}m(Dilo | < cf4.

<[ bb—1 Jo<I[ Js< ¢4 Therefore |[ ],— [ J¢|< 3¢/4
Therefore [ ], =[ ],-
In a similar fashion it follows that f min{K m (V), SEE)V) + G(E (7)) =

—[ ]s
Suppose V isin F. We see that if 0 < < K", then f G(K")(I) j , LK) (I)

< s(H +P)(V). Furthermore, if 0 < K" < K''%, thenf LE"YI) < f, L(K'"*)(I)
and [, (E")I) < [, HE"*)(I)-
For each V in F, we let

MV) and g(V)
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denote, respectively,

sup [, (K"')(I) and sup [, G(E")I),

tor 0 << K",
We see that each of h, g, s(H +P)—h and s(H + P)—g is in RF,
so that each of % and g is in €. Furthermore,

[o (M) — [, LE" YD) | + ] 9(V)— [, GE)D) ] -0 as K" —>oco.
Now
L[y min{& m(V), sE)(V) + WV)}]u— [, min{E, H(V) + P(V)}n(V)]| =

= ln—[ LISMO) —[,LEH(T) >0 a5 E* > oco.

Therefore f y K m(V), S(HNV) + WV)} = f ymin{K, H(V) + P(V)}
(V). ' o
In a similar manner it follows that

[ o min{& m(V), s(H)(V) + 9"} = [, min{K, H(V) + P(V)}m(V).

We see that each of s(H) + % and s(H) + ¢ isin 0. It therefore follows
from Theorem 5.A., letting K — oo, that s(H)U) + MU)=s(H + P)U)=
=S(HNU) 4+ g(U), so that WU) = ¢(T).

Now, if 0<< K" < K''*, then by Lemma 6.1 and inequality (2.6), fUL(K”)(V)——
[, 6@ 7=/, win{K"" m(V), [ ¥ LK *)(I)}— Jomin{E" m(V), [, HE"*}I)}
< [p LE")(V)— [, GE"*)(V) >WU)—g(U) as K'*>co. But
MU)—g(U) =0. Therefore f » LIE'WV) = J' » GE")(V), and therefore
[y min{K", P(V)}m(V) exists. Furthermore, for each K" >0, [ min{K",
P(V)}m(V) < [,min{K", H(V)+ P(V)}m(V)<s(H +P)T), so that P is
in W.

Therefore H + P isin W if and only i P is in W, in which case

$(H 4+ P) =s(H) +s(P).
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7. »~ Two product theorems for W.

Suppose P is in W.

Lemma 7.1. If 0<e¢, then ¢P is in W and s(c P) = c¢s(P).

Proof. The lemma is obvious for ¢ =—0.

Suppose O0<<e. If V is in F and 0<K, then cfy min{K/e, H(I)}.
m(l) = f,,min{K, cH(I)}m(I). Letting K - oo, we see that the lemma
follows.

We state the following lemma.

Lemma 7.2. If Hisin R+ and is bounded, then H is in W if and only if
f » H(V)m(V) ewists, in which case, for each V in F, f » H(I) m(I) = s(H)(V).

Lemma 7.3. If H is in W and is bounded and 0 << K, then

fumin{KH(V), P(V)}m(V)
exists.

Proof. There is a number K*¥ >0 such that 1—H/K* is in R*.
Let K' = KK* HK'H/K* isin W and bounded. Therefore, by Lemma 7.2,
[, min{K" H(V)/K*, min{K', P(V)}}m(V) exists and is [, min{ K" H(V)/E*,
K, P(V)}m(V) = f,,n’u'n{K’ H(V)/K*, P(V)}m(V) = fumin{KH(V), P(V)}.
m(V).

Theorem 7.1. If H is in W and bounded, thenn. H P s in W, and
for each V in ¥,

s(H P)(V)= [, H(I) s(P)(I).

Proof. There is & number M such that M —H is in R+
We first show that HP is in W. Suppose 0< K and V isin F.
Suppose 0<<d. 1/(H +d) is bounded, and by Theorem 4.3 fyfr)z(I)/

J(H(I)+d) exists. By Lemma 7.3, [, min{K/(H(I)+d), P(I)} m(I) exists, so
that by Theorem 4.1, fV (H(I) + &) min{K/(H(I) + d), P(I)}m(I) exists and
is [, min{&, (H(I) + ) P }m(I) .

Now let T, denote

inf [, min{K, (H(I) + d) P(D)}m(I),

for 0<d.
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Suppose 0 <Ce¢. There is a number d* >0 such that ¢/3 >d*s(P)V) =
=s(d* PV) > f min{K a*P(I) }m(I).

There is a number d >0 such that f min{E, (4(I)+ d') PI)}o(I) -
Ty<cf6.

Let @' =min{d’, d*}.

We see that there is a subdivision D of V such that if % is a refinement of D,
then 3, min{K, d" P(I)}m(I)<e¢/3 and

| To—[2,min{K, (H(I)+ a") PD)}mD)] ] < ¢/3,

so that
| Zp— [, min {&, BT PO} <| Ty—[ L] +][ h—[ ki<
<¢/3 + 3, min{E, &"P(I }m(I )< ¢/3 +¢/3,

by inequality (2.5). ;

Therefore f ,min {K, H(I) P(I)}m(l ) exists and is 7T - Furthermore,
f,,min{K, H(I) P(I)}m(I)< fVI'ﬂiH{K, MP(I)}m(I)<s(MP)(V), so that
HPisin W. '

We now prove the remainder of the theorem.

Again, suppose V is in F.

Suppose 0<d. H +d isin W.

If K" is a positive number, then, by Theorem 4.1 and Corollary 2.K. y

f (H(I) + d)f min {K", P(J)}m(J) exists. By Theorem 4.4 and Lemma 5.1,
[, (H(I) + @) s(PXI) exists and
[y (ED + ) [min {T", PO}nl) > [, (B +d)s(P)I) as K" - co.

- Suppose 0<<CK and O0<e.
[y (@) + o) min{E/(W + o), PI)}ym(I) <
<[, min{E, (EQ) + ¢) PI)}m(I) < [ (B(I) + ) min{Eje, P(I)}m(I)

Therefore fV (H(I) + ¢) s(PYI) <s((H+ ¢) P)(V) < J'V (H(I) + ¢) s(P)I),
so that s((H + o)P)(V) = [, (E(I) + ¢) s(P)(I) -

Now s(H P)(V) +s(c P)(V) =s((H + )P)(V) = [, (H(I) +¢) s(P)(I) =
Mf H({I) s(P)(I +f ¢ s(P)(I) = f HI) s(P)(I) -+ s(c P)(V).
- Therefore s(H P)(V) = f H(I)s(P)I).
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8. - min{H, P} and max{H, P} for H and P in W.

Theorem 8.1. If each of H and P is in W, then each of max {H P}
and min{H, P} isin W and, for each V in F,

s(max {H, P})(V) :,fl’ max {S(H)(I), s(P)I)}
and ‘

mm{H P} V) = f min {s(H)(I), s(P)(I)}

Proof. Suppose V is in F.
“If 0< K, then

e max{ [, min{ K, H(J)}m(J), |,min{E, P()}m(d)} =
- ~[,,n:tzngmin{l(, H(I)}m(I)k, min{ K, P(I)}m(I)E =

= [, min{X, max {H(I), P(I)}§m I

Furthermore, 0 < [, max {s(H)(I), s(P)D)}—], max{[, min{E, H)}.
m(d), [, min{K, PU)} m(I)} < [,| s — [, min{K, HD)}m(J)| + | s(P)D)
— flmin{K, PI)}mJ)| -0 as K — oo by Lemma 51. Therefore
max{H, P} is in W and :

~ s(max {H, P})(V)= f,,max {s(END), s(P)(I)}-

If 0<K, then

[y min{ [, min{, AJ)}m(J), [,min{K, P(J)}m(J)}=
=, min{min{ ¥, H(I)}m(I), min{E, P(I)}m(D)} =

= [, min{K, min{H(I), P} m(I),

so that by a procedure similar to that in the preceding paragraph, min {ZI s P}
is in W and .

s(min {H, P})(V) = f Imn{s )y $(P)D)}.
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9.- H'P?2for H and P in W and 0<<g<1.

In this section we prove Theorem 9.1, the second analogue of & theorem of
Hensrock [5] mentioned in the Introduction.
We begin with a lemma.

Lemma 9.1. If Q is in W and 0<<t<1, then Q! is in W, and for
each V in I,

SQY(V) = [, s(@I) m(Iy-—".
Proof. Suppose 0< K and V is in 7.
Jo [min {7 QD }m(T) ] m(I)=¢ = [, [min {E, Q(I)}] m(I) =
= [,min {K, Q(I)?} m(I).

Now  [,] [s(@@) mI)y~t— [, min{K, QI)}m(I)|< [o]r [s@D) —
L min{K”‘, QW)Y m(J)] m(I)l“<[s(Q)(U)~fvmin{lcl/‘, Q(V)} m(V)]t
-m(U)*—=0 as K — oo, so that @Q!is in W and for each V in F,

s@)(V) = [, s(@D)t m(I)-*.

We now prove Theorem 9.1, as stated in the Introduction.

Proof. Suppose 0<<K and V is in 7.
Suppose 0 < ¢ andeach of K’ and K* is a number such that min{K’,

K$}> ma,X{K, (K Jer-a)tle, (K/c‘I)l/‘l“"}.

[y min{E m(I), [min {K', H(I) + ¢} m(I)]* [min {T*, P(I) + o}m(I)]} =
= [rminf, min{I, (H(I) + o)} min{I, (P(D) +op=}f m(T) =
= [,min{K, K'eK*~1, K'« (P(I) 4 c)~, (H(I) + ¢)7 K¥-a,
(BT + o)t (B(T) + e)=s} m(D) =

= [, min{E, (HI) + ¢)* (PI) + ¢)=a}m(I),

since, for each I in 7, min{K's K*1~¢, K'?(P(I) + ¢)-, (H(I) +e)r K11} > K.
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Let T, denote
inf [, min{K, (H(I) + ¢)* (P(I) + ¢)=1}m(I),
for 0<e.
Suppose 0< d.
There i8 @ number ¢’ >0 such that
0< f ymin {K, (H(I) + ¢')e (P(I) + ¢ )=} m(I) — T, < dj4.
There is 2 number ¢* >0 such that

et s([H + ¢*]7)(U) + ¥ s(P9)(T) < dj4.

Let ¢'* =min{¢, ¢*}.
By Lemmas 7.1 and 9.1 and Theorem 6.1,

[, min {E, (H(I) + ¢'*)1 ¢'*1=2 4 ¢'*« P(I)~<} m(I)],

exists, so that there is a subdivision E’ of V such that if F is a refinement of
E', then

[ Lh—[2,min{K, (H(I) + ¢'*)2¢"*1-e 4 ¢"*a PI)=}m(I)], | < dj4.
There is & subdivision B* of ¥ such that if % is a refinement of E*, then
[[ [, min {E, (H(I) + ¢*) (P(I) + ¢'*)=c} m(1)],—
[3,min {&, (H(I) + %) (PI) + o=} m(D)]s | < dj4.

There is @ common refinement E'* of ' and E*.
Suppose ¥ is a refinement of B'*.

0<[ L—[3, min{E, H(I)® P} m(I)]s <
<3, min{E, (H(I) + ¢'*)e (P(I) + ¢'*)-e— H(I)e P} m(I) <
<[ <4t +[ h<a/t 4 *-<s([H + ¢'*]7)(U) +

4 ¢'*a s(Pl—q)(U) < d/4 - d/4 == (1/2.
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Since |[ L—1[ J:|<d/4, it follows that |[ J;—[ J:|<<3d/4. Since,
0<[ Js— T,<dj4, it follows that |7,—[ Js|<d. Therefore [, min{K,

H(I)e P(I)*=2}m(I) exists and is T,
Again, suppose 0< ¢ and eaeh of K’ and K* is a number such that
min {K', K*}>max{K, (K/¢")", (K/c)*~9}.
[ [, min{K m(I), s(H + 6)(1) $(P + e)(1)*""}]s—
JymindE, (H(I) + o)t (PU) + ef=jm(I) =[ Jo—
[, min{Km(D), [ [, min{E", B(J) +c} m(d)]e | [, min{K*, P(J) +c}m(d) - <
<[ |8 + s +Iy-—-
[[,min{E’, A(T) + c¢}m(d) o[ [, min{ K*, P(J) + e} m(J) ]| +0
as min{K', K*}->oco Dby Theorem 2.3, so that
[, min{K w(T), s(A + e)1)es(P + e)I)-} =
= [, min{E(H) + ¢)* (P(I) + ey} m(I) —
— [, min{K, H(I)* P(Iy*="}m(l)
as ¢—0 by the preceding paragraphs. Furthermore,
< [y minf{K m(I), s(H + e)I)?s(P + e)(I)~1}—
[ min{E m(I), s(E)D)*s(P)I)=} <
< [yls(E +oIes(® + (D7 — SU))" S(PYIy—| <
< [p sl + o)D) [e D)= + [o m(D)]e s(PYI)—0 <
<S(H + o)(V)e[e m(V) ]~ + [6 m(V) ] s(PYV)*=2 -0

as ¢ —>0.
Therefore fymin{K m(I), s(H)(I)es(P)(I)+=7} f min {K, H(I)* P(I)*"*}m(I)
We see that the function » on F defined by (V) = J' s(H)(I)e s(P) (1)1
is in C. Therefore, by Theorem 5.A., fy min{ K, H(I)e P(I)*~*}m(I) =
= fy min{K m(I), fIs(H)(J)H s(P)(J)-} — fv s(H)I)? s(P)(I)** as K — oo.
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Therefore H? P~ isin W and, for each Vin F, s(H?Pi-9)(V) =
= fv S(H)(I)2 s(PY(I)re,

10. - Hefor H in W and 1< gq.

We now prove Theorem 10.1, as stated in the Introduction.

Proof. Suppose 0< K.

Since f y min{KY, H(V)}m(V) exists, it follows from Theorem 4.2 that
it Visie F, then [, (min{E", H(I)})em(l) exists and is j,, min{ &, H(I)?}.
m(I).

Now, if ¥ is in F and D is a subdivision of V, then

| 2p(min{ K, H(I)}Jrm(I)— 3, [, min{KYe, H(J)}m(J)]e m(I)t-2| =

=| > ,([min{K"", H(I)}m(I)‘]‘I—— [fl min{K”“, H(J)}m(J)]q) m(I)-e] <
<3, g BN m(I) et | min{K*~, H(I)}m(I)— f  oin{KYe, H(JT)ym(J) | mI)-7 <
< g K™Y, | min{K™, H(I)}m(I )— f, min{ K%, H(J)}m(J) |,

so that by Theorem K, [, [min{K', H(I)}]*m(I) = f,,[f, min{K*?, H(J)}.
m(J) e m(I)e.

If fys(H)(V)q m(V)-¢ exists, then for each V in F, f,,min{K, H(I)}.
m(I) = f;,[f, min{ K", H(J)}m(J)]e m(I)~2 — fvs(H)(I)q m(I)=2 ag K — co,
by Theorem 3.1, so that Heis in W and for each V in F, s(H)(V)= f,,s(H)(I)“.
m(l)—e,

Now suppose H¢ is in W. For each positive integer #» and each V in F,

[o L[ min{ni, H)}m()] ()= = [, minfn, H(1)7}m(I) > s(H)(V)

as n — oo, 80 that again by Theorem 3.1, f,, s(H)(I)? m(I)*-* exists and is
S(H) (V).

11. - 1/H for H in W.
We now prove a special case of the last theorem mentioned in the Intro-
duction.

Theorem 11.1. If H is in W and for some number T >0, H—T
is in R*, then, for each V in F, f ,MIH(I) exists and is f > M) s(HWI).

Proof. Suppose V is in 7.
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If 0< K, then, by Theorem 4.3, fy m(I)min{ K, H(I)} exists and is
fyon(I)ﬂ/L min {K, H(J)}m(J).
Liet

§ = inf f » m(D)min{K, H(I)},

for 0< K.
Suppose 0 < ec. There is a number K’ >0 such that m(V)/H <c/4

and 0 < fym(I)/min{K’, H(I)} — 8 <c/4.y There is a subdivision D of V
such that if ¥ is a refinement of D, then

| f y (D) min{K’', H(I)}— 3 m(I)/min{K’, H(I)}| <¢/4,

so that |8— 3 m(I)/min{K’, H(I)}| < ¢/2; furthermore |3 m(I)/min{K’,
H(I)} — 21: m(I)[H(I) ] = I ZE max {l/K', l/H(I)} m{I) — m{I)/H(I) I <
< mD)/E' =m(V)E'<c/4, so that |S§— 3, m(I)/H(I)|< 3c/4. The-
refore § = f‘,m(I)/H(I).

We therefore see that if 0 < K, then J'V m(I)z/f, min{K, H(J)} m(J) =
= f,, m(I)min{K, H(I)}— f,, m(I)/H(I) as K — co. By Theorem 3.2,

f »m(I)2/ f, min{K, H(J)} m(J) — fv m(I)Ys(H)(I) as K — oco.
Therefore ~fym(I)/H(I) = fym(l)‘*/s(H)(I).

12. - The set W*.

We begin by stating an immediate consequence of Theorem 6.1, as men-
tioned in the Introduction.

Lemma 12.1. If each of H', H", P’ and P" is in W and H' —P' =
= H"— P, then s(H')—8(P") = s(H")—s(P'").

We now prove Theorem 12.1, as stated in the Introduction.

Proof. Obviously WCW* n R*.

Suppose H is in W* n Rt. Then for some P and P', each in W, H =
=P —P', so that P =H + P’ which, by Theorem 6.1 implies that H
is in W.

The final statement of Theorem 12.1 is again an immediate consequence
of Theorem 6.1. ;

As stated in the Introduction, the consistency implied by Lemma 12.1 and
Theorem 12.1 permits the following extension of the function s from W to W*:
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If H is in W*, then we define S(H) to be the function x on F such that if each
of Y and Y' isin W and H =Y —Y', then x =8(Y)—s(¥Y').
‘We see that if A is in W#*, then s(H) is in C and is bounded.
~ 'We state the next theorem without proof:

Theorem 12.2. If each of a and b is a number and each of H and P is
in W*, then aH -+-bP is in W* and s(aH + bP)=as(H) -+ bs(P).

Theorvem 12.3. IfH isin W¥*, then | H|1is in W and, for each V in F,
s(IE V) = [, | sE)D) |-

Proof. For some P and P, each in W, 4 = P— P, sothat |H| =
=|P—P'| =max{P, P'}—min{P, P'}, which is in W by Theorems 8.1
and 12.1, which imply further that for each V¥ in F, s(|H|[)(V)=
s(max {P, P'})(V) —s(min{P, P'}(V) = f max {s(P)(I), s(P'’ND)} — fﬂnin
{s(P)(I), s(P")(D)} = L,]s(P YI)— s(PYI) | = J'V[s(P PYI)| = fyls(H)(I) [

In a similar fashion, by means of successive applications of the formulas:
min{a, b} = (¢ +b—|a—>b[)2 and max{e, b}=|a—b| + min {a, b},
we have the following analogue of a theorem of HeEnsToOK [5] mentioned in
the Introduetion which we state without proof.

Theorem 12.4. If each of H and P is in W*, then each of min{H, P}
and max {H, P} 1is in W*, and, for cach V in F,

s(min{H, P})(V) = fy. min {s(H)(I), s(P)(I)}
and
s(max{H, P})}(V) = fV max {s (A)(I), s(P)(1)}.

Lemma 12.2. If H 18 in R and bounded, then H is in W* if and only if
f L H(V)m(V) ewists, in which case, for each V in T,

S(EHNV) = fH ym(I).

Proof. First suppose that H is in W*. If V is in #, then s(HYV) =
= s(max {H, 0} + min {H, 0}}(V) = s(max {H, 0})(V)— s(—min {H, 0})(V)=
= fymaX{H(I), 0}m(I)— fy—min{H(I), 0} m(I)= fVH(I) m(I), by Lemma
7.2,

Now suppose that [, H(V) m(V) exists. We see that each of f , max {H(V),
0}m(V) and _[U min{H(V), 0}m(V) exists, so that each of max {H, 0} and
— min {H, 0} isin W, so that H is in W*.
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Theorem 12.5. If cach of H and P is in W* and H is bounded, then
HP isin W* and, for each V in F,

s(H P)(V) = [, H(I) s(P)(I).

Proof. For some ¥ and Y', each in W, P =Y — Y'.

Wesee that H P = (max {H, 0} + min {H,0})(Y — ¥’) = [max {H,0}Y +
+—min {H, 0} ¥']—[max {H, 0} ¥’ +— min{H, 0} Y], so that, by Lemma
7.2 and Theorems 6.1, 7.1,12.1 and 12.4, H P is in W*; furthermore, if V is in
F, then: $(H P)(V) = s(max {H, 0}Y)NV) + s(—min{H, 0} Y')(V)—
s(max {H, 0}¥')(V)—s(—min{H, 0}¥Y)(V) = f,, max {H(I), 0}s(¥Y)(I) +
+ f,,—— min{H(I), O}S(Y’)(I)—fyma,x{H(I), O}S(Y')(I)mfymmin {H(I), 0}.
s(I)D) = [, HDS(X)I) —s(X'ND)] = [, HI) s(P)(I).

We now prove Theorem 12.6, as stated in the Introduction.

Proof. By Theorem 12.3, |H | is in W, so that by Theorem 11.1, 1/| H |,
which is bounded, is in W, so that f (V)| H(V)| exists. By Theorem 12.5,
H /| H|, which is bounded, is in W#, so that fUH(V) m(V) [| H(V)| exists.
By Theorem 4.1, f,, H(V) m(V)/(|H(V)|?) exists and is fU m(V)/H(TV).
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