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A Note on Nﬁrlund. Means. (*%)

1. — Let {p,,} be a sequence of complex numbers with

P, .—;zpvio (n>0) and P,=0 (n<0).

=20

Then we define the NORLUND mean or the (N, p) mean of the sequence

n
$n = > a, of the infinite series of complex numbers > a,, by means of the
r=0

transformation:

tz :Pn_l-zpn—-vsv'

v=0

The necessary and sufficient conditions for the regularity of (N, p) method
(see [4], Theorem 2) are

(1) v Pn = O(Pn) (’)’b - OO),
and
)  Pr=3|p,| =0,

And also the necessary and sufficient conditions for the absolute regularity
(see [5]) are (1) and, as # — oo,

P,

P”—-v__‘~ n—yp—1
P,

- Pl | 0@1),

uniformly in ».

(*) Indirizzo: Department of Mathematics, G. M. College, Sambalpur, Orissa, India.
(**) Ricevuto: 28-VII-1967.
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Since (1) is equivalent to
(4) —Pn——l = Pn _l_ O(Pn)y

with every regular and absolutely regular (N, p) method there are associated
power series

w

P(Z):anZ", p(z):(lb—z)-P(z):zpnzn7
n=0 pramer
which are convergent for |z|< 1.
Let the sequence {g,} be defined similarly as {p,}. We define the sequence
of constants {c,} {k.}and {i,} formally by means of the following identities:

) = 3 00 = ole) (0 =0)
(5) 3 qR) pHR) = 3 kn 2 = k(z) (ky=0)
P(2) g2 (2) = X 1, 2" =1(2) (I =0).

n=0

If all the series summable by the method A are also summable by the method
B, then we say that A implies B and we write Ac B. If Ac B and B ¢ A, then
the two methods are said to be equivalent and we write A ~ B. If A is equi-
valent to convergence we say that A is ineffective.

2. — The main object of this Note is to obtain a factor (Theorem 1) foax
absolute NORLUND summability. This problem has its origin in the following
problem: In the case of CEsARO summability we know that |C, «|c|C, §|
where 0 < « < 8, that is, if {7} denotes the CEsARO mean order « of {s,}, then
>l do%| < co implies ¥,| 40f| < co. The converse problem has been tackled
by various authors in considering | C, | summability of the factored series
> &, @, Whenever > a, is summable | C, 8|. But here our attempt is in a new
direction. Instead of affecting the series by multiplying the factor {e,}, we af-
fect the difference of the mean, that is, given > | A¢f| << oo, we in particular
investigate the necessary and sufficient conditions on {e,} such that | e, |-
+ | do%| < co. We consider this problem in the NORLUND summability set up.
To appreciate the importance of Theorem 1, we give below & result which follows
as a corollary from Theorem 1.
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Theorem 1 (a). Let 0 <a<f. Then the necessary and sufficient condil-
ion that 3 | e, ]| Aol | < oo whenever 3 | Adof| < oo, is that e, = O(n*~F).

In particular, taking o« = 0, we obtain &,— O(n™F) to be the necessary and suf-
ficient condition for absolute convergence of > &, a, whenever > a, is summable

|G, B1.

Incidentally, it is seen that Theorem 1 is instrumental in obtaining Theorems
2,3 and 4 which are theorems of inclusion and equivalence of two NORLUND
methods. From Theorem 3 and 4, in particular, we obtain different type of
theorems for the ineffectiveness of |N, p| method. Lastly Theorem 5 and 6
which give sufficient condition for the ineffectiveness of (N, p) and |N, p| .
method are deduced from known results.

We now state the following theorems.

Theorem 1. Let condition (2) and the following hold:

(6) k(z) = i k,2n is convergent in |2|<1,
S 1]
P et == (1)
(7) [ v[ﬂgv IPn Qn—-ll ( )

Then the necessary and sufficient condition that > | e, || 41| < oo, whenever
S| A8 < oo, is that &, = O(] Q.| /| Pa))-

Theorem 2. Let condition (2) and (6) hold. Then the necessary and suf-
jicient condition that | N, p|c| N, ¢| is that

(8) -Pn - O(Qn) -

Theorem 3. Let (2) and (6) and the following hold:
(9) Ue) = > 1, 2n  4s comvergemt in |2|<1.
n=0

Then the necessary and sufficient condition that the | N, p| is equivalent to
IN, ¢q| is that (8) should hold.

Theorem 4. Let p(z) and g(z) be regular in |z|<<1. Let (2), (6), (9)
and the following hold:

(10) Q=3 1q,]=0@.
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Then |N, p| ~|N, ¢].

Theorem 5. Let p,>0. If
(11) ' lim P, < 27, ,

then (N, p) is ineffeciive. The inequality (11) is best possible in the semse that it
can not be improved.

Theorem 6. ZLet p,>0 and non-increasing such that (11) holds. Then
[N, p| is ineffective and in this case also (11) is best possible.

It may be pointed out here that recently MISENGER [6] has proved, in
particular, the following

Theorem. Let |N, p|, | N, q| be two absolutely regular method such that

2l k| < oo, 2t < oo,
Then |N, p| ~|N, ¢q].

Comparing this theorem of MISENGER with Theorem 3 and 4 of ours we
note the following facts.

Instead of assuming absolute regularity of the methods we have assumed
(2) (in Theorem 3) which is one of the regularity condition of (N, p) “method.
Though (1) is common to both the set of conditions of regularity and
absolute regularity of (N, p), yet we know that, in general, regularity and
absolute regularity are independent notions. Of course, in case of (N, p) method,
if P, is bounded, reqularity implies absolute regularity; for (2), implies that

(@) P> E o],

for some positive constant K (which is not necessarily the same at each occur-
rence) and (2), with the boundedness of {P, } implies

(b) P,e BV.
Also it follows from (b) that pn:o(1)§ and from (2) and (b) that P, — P (540).

Now it is easy to see that p, = o(P,), and {P,_,/P,} is of bounded variation in
n uniformly in » so that | N, p | is absolutely regular.
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3. - We require the following lemma for the proof of Theorem 1.
Lemma 1. The necessary and the sufficient condition that {12} € BV
implies 3 | &, || 41° | < oo, is that

(12) S 18, =00,

n=g-tl1

uniformly in p, where

SM === v
0 (o >n);
and

G(”? ’V) == (kn—v/Q" - kn—v—I/Q”_l) ‘PV *

Proof. We have, from (5),

(13) Q" = z kn——v Pv’
p=Q
and so
{14) > Gm, »)=0.
y=0

Using (14) and the familiar inversion formula

n
¢ . -1
tn _ Qn Z kn—i- ‘Pv t:’
pe==0
we have

nyy *

{15) e At =&, 3 G(n, ») 17 =3 A2 8

=0 0

Now the lemma follows from the transformation (5) by using the theorem
of Knopp and LoreNTzZ [5].

Proof of Theorem 1. Sufficiency. It is enough to show that the
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condition of Lemma 1 is satisfied. Since &, = 0(Q,/P,), it is enough to prove
that

= 0(1) i

uniformly in p. Now since

0 4]
Z (kn——v—— kn——v-—l) Pv = z p, kn—v_— Pg kn——g—l ’

ye=0 p=0
we have
e 1 [ <]
J, < z o z (kn-—-v ]"n——v—l) 'Pu + z 24 71:—;:-— »

n=o+1 n p=0 n=g+1| Yn-1 v=0

bl 1 4 e l Bn_p—1 I
< k _ P £ +
n=§Q'+1 I Pn [ v% { ! e l T l ]7l=201-1 [ P“ I

+ 3 LS kLB =P IO TP, sy
n==g+1IP Qn—ll

Now by (2), for m>n,
| P.| < P¥<PX=0(P,).

Hence, by hypotheses,

«© @

so=%1p) 3 tedam S 3

n=gp+1 [PI

n=g
1 o
<K 2 p <K,
IPulv=0
o 1Pl &y
o< [ng |,1§+1‘ Foet | <X
and lastly also:
@ [Qn [ ¢ |
J K]Pl zlkn v—l’ K!P, -5 <K.

n= g«rl !P Qn—-l y=0 —‘Q+1 ]P Qn—ll
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Necessity. It follows from Lemma 1 that the condition S,., ., = 0(1)
is necessary. But

ko /2

Se+1,e+1 - 89+1(QQ~L1 @“)Peﬂ == &yt Pe+1/Qg+1 ’
; e

whence follows the necessity.

‘We now obtain the
Corollary 1. The necessary and sufficient condition that {oﬁ‘,}e BV,
R . . 1 .
o >0, implies 3| e, || At, | < oo, where {t,} is the (N, 7;—_:) mean of {s.}, is
that &, = 0((log n)/n*).
Proof. When g, =
that [3]

and p,=A%", then it has been proved elsewhere

n -+ 1

H(e) = {log ! N} (1—2)* (o >0),

1—2

con be exchanded in a power series which is convergent in |2z | <1. It is easy
to see that other conditions of the lemma are also satisfied.

Corollary 2 (see[2]). Let (2) hold. Also let 3 |¢.| < oo. Then the
necessary and sufficient condition that > &, a, should be absolutely convergent when-
ever > a, is summable | N, p| is that e, P, = 0(1).

Proof. Put go=1, q, =0 (n>=1).

4. — We require the following lemmas for the proof of Theorem 2.

Lemma 2. The necessary and sufficient condition that |N, p|c|N, q|
(that is € BV, 2 —>s imply t2€ BV, ti—s) are that

(16) k,_, = 0(Q.) (v fized)
and
(17) S [S6m )| =0,

n=g+1 v=0

uniformly in o > 0.
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Considering the transformation (15) with &,=1, the lemma follows by appeal-
ing to the theorem of Kxopp and LoRENTZ [5].
Lemma 3. Conditions (2), (6) and (8) togather imply (10) and also (7).
Proof. Since by (b) »

we have

TS Sk L2, =20, 2 <ES |p,| =0P,) = 0(Q.,),
0=0 y=p =0

=0 =0

and this proves (10). Next writing | ¢.| = QX — @ ,, and noting that
(18) Q. = O(P,)

[this follows from relation (13) by using (2) and (6)], we observe that the condit-
ion (7) is satisfied if

(19) FEADS ;an(i"_ﬁ — o).

Now by (10) we have
QF<QE<K|Qu]| (m>n),

and so left hand side of (19) is equal to

of12.13 )

n=yp

or O(|P,|/QF) which is itself O(1) because of (10) and (8).

Proof of Theorem 2. Pubt ¢, =1in Theorem 1 and we get the nee-
essary and sufficient condition so that 2 € BV implies t2 € BV. Now because of
Theorem 1, Lemma 2 [note that the condition (17) is the same as the condit-
ion of Lemma, 1 with ¢, = 1] and Lemma 3, we have only to prove (16).

Now since by (6) Y |k,|<< oo, we have k, = o(1). Also by (10), 19, |1 <<
< K| g |"* Hence, uniformly in »,

Ten—y
@n

as n — oo, and this proves the theorem.

<E[g|" | = o(1)

] 711'
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Proof of Theorem 3. Considering the inclusion [N, »|c|N, ¢]
and | N, ¢|c | N, p|in the light of Theorem 2 and taking into account Lemma 3
and relation (18), we immediately see the truth of the sufficiency part of the
theorem. Since | N, p|c| N, ¢| is necessary when they are equivalent, the nec-
essity of condition (8) follows from Theorem 2.

Proof of Theorem 4. When (2), (6) and (9) hold, then (8)
is equivalent to (10); for, since by (5) P, =>1,_, @Q,, We obtayiﬁ (8). Now

v=0

the other implication is contained in Lemma 3. Thus it follows from Theorem 3
that (2), (6), (9) and (10) are sufficient conditions for equivalence.

5. — To prove Theorem 5 and 6, we require the following lemmas.
Lemma 4 (see [1]). Let A be a regular triangular sequence-to-sequence tran-

ki3
sformation given by t, = Zo«.m s,. Suppose that

=0

. n—1
im int { oty o | — 3| ., |} >0.

r=0

Then the method A is ineffective.

Lemma 5 (see[6]). Let Abe an absolutely regular semilower Mmarie [oc,z;] such
that ’

© k
hmmf{]oc,,,,l——; Z lz(“k,i——ak’l'i)l}>0'
k=n+1 i=n

“ Then | A | is ineffective.

Proof of Theorem 5. We note that a,,>0 for all » and »; and so
the condition of the Lemma 4 takes a simpler form. It is easily seen that in
our case it reduces to

o P 1

lim inf F: >3
and this inequality can not be improved, for consider the case
(20) P =1, P, =c¢>0, P =0 (n>2).

Tt is clear that (N, p) sums the sequence (— ¢)» to the value 0 but it diverges
if ¢ >1.
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Proof of Theorem 6. By Lemma 5, we have only to show that

>0,

Po

(21) lim inf {__ _ Prn  Piop

P k P k-1

n k=n-+1

Now by hypotheses, and for n =0, 1, ..., k—1,

P/ Pr < Py [ Prs

and so, forn >k >1,

Pn—k —1— kz_l Pr—y > 1 ___‘ Qz—l pf-ll;-—l-—v :Pn—k—l .

Pn y=0 n p=0 n—1 Pn-l

Therefore, noting that when p, is non-negative and non-increasing (4) is
true, we have

©

P kn P k—n—1
Py P

’

< (—Pk——n _ Pk—-n—-l) . Po

P P,) ~ P,

k=n+1 kempn-1 n

8o that (21) reduces to (11).
Considering the example (20) we observe that (— ¢)” is summable | N, ?|
to 0, but it is not of bounded variation when ¢ > 1.

1 1
= Tethod J o s ive.
Corollary. Methods (1\, (n—{—l)’-’) and | N, TR are ineffective
‘We only note that
HmP, = > — ¥ <2
imP, = 3 —— =—
n—>® neo (m 4 1)% 6
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