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Approximate Solution
of the Exterior Dirichlet Problem

and the Calculation of Electrostatic Capacity. (**)

1. - The Exterior Dirichlet Problem.

In Euclidean n-space E®, let the open set R; be bounded, contain the or-
igin, and be homeomorphic to the interior of the unit sphere. Let the boundary
of R, be § and let ¢ be defined and continuous on §. Set B = [E"— (R, U 8)].
Then the exterior DrRICHLET problem is that of tinding a function » on B u §
which hag the following properties:

(i) on R, u is a solution of LAPLACE's equation;
(ii) on 8, v =gp;
(iif) w is continuous on Ry S; and
(iv) u is bounded on R u S if % = 2, while if # > 2 there exists a cons-
tant 3 such that for all points P € (R u §) one has

| w(P)| < (M = 0P).

Under weak assumptions on the structure of §, it is known that the above
problem has a unique solution (PETROVSKY [1], pp. 189-192) and it is only
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with such problems that we shall be concerned. Moreover, since it is only un-
der exceptional circumstances that the solution can be given constructively
(Bicgrry [2]), we shall be interested here in describing a digital computer
technique for approximating « and related quantities.

Property iv, above, will require that the cases # = 2 and % > 2 be treated
differently. However, it will be shown that the numerical method for # = 2
can be modified almost trivially so that it is applicable to the case # > 2. Spec-
iu] attention will be given to the case 7= 3 and application will be made to
the estimation of electrostatic capacity (Pérya and Szeeé [8], Ch. IIl).

2. - The Exterior Dirichlet Problem in E2.

The approximation method to be developed here is the natural one of
applying an inversion mapping to the given problem, then solving the resulting
interior problem numerically, and finally reinverting to yield an approximation
of the given exterior problem. For this purpose, the notation = u(z, y) on
RuS,p=e¢px 9 onS and du= 1, + %, ==0 on R will be useful. Our
method will be called Method E (for Exterior) and is formalized as follows.

Method E.

Step 1. - Construct S and R, where 8 — 8¢ and R -> R¢ under the in-
version mapping

(2.1) §:x2+y2’ 77=m7 (7w gy 5= 0).
Since (2.1) implies
§ 7 L oae .

2.2) .1~§2+772 J:§2+77_2’ (& et =0,
set
(2.3) (@, y) == u{ : | =w(& 1)

’ D £ 4’ o P
(2.4) (1) =ty | = w(& 7)

. Py L £ Lo H £ o ’

Then it is known (Perrovsxy [1], pp. 189-192) that the exterior DIRICHLET
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problem defined in Section 1 is equivalent to the following interior DIRICHLET
problem: ‘
Find »(&, ) on Rfu 8 which has the properties

() on Ri v is a solution of the LAPLACE equation

(2.5) Vge + Uy = 03

(2.6) o(&, n) = ol 1);

(¢) (& %) is continuous on Rfu S

Step 2. TFix (§ ») eR'u 8 and for h~0 determine the planar grid
points (Z + ph, 7 +qh); =0, £1, +2 ..;¢=0, +1, &2, ... The set
of all horizontal and all vetical lines through the planar grid points is called
a planar lattice. Now, let R} denote those planar grid points which are 2lso ele-
ments of B¢ and let 8! denote the points of intersection of the planar lattice
and 8. R! is called the set of interior lattice points associated with R u § while
i is called the set of boundary lattice points associated with B v 8. For a point
(€, m) € RE, we call the four points (& 4 Ty )y (&, + Po)y (E— by, ), (&, p—Ty),
which are poiats of B} U §; and which are nearest to (£, n) in the east, north,
west and south directions, respectively, the neighbors of (&, 7).

If then R} consists of m points and S: consists of # points, number the points
of R} in a one-to-one fashion with the integers 1, 2, ..., m and the points of S;
in 2 one-to-one fashion with the integers m -+ 1, m+2, ..., m+n Further, if
W is a function defined on R} U 8: and if point (&, 7) has been numbered ¥,
we shall use the subscript notation W(&, 77) = W.

Step 3. At each point (&, 7) e 8, set
(2.7) V&, "7) = (&, n).

Thus, each Vi, for k=m -+ 1, m + 2, ..., m -+ n, is known.

Step 4. At each point (&, n) € Ri, set down in subscript notation the
LAPLACE difference analogne

1 1 2 2
— 2 7 [ . ! T /4 a-h,)
< [ -r—] j‘ T <§’ ,)7) ‘ hl\lll + 713) V(EThl’ 77) ' V\E’ 77 ‘ h-) v

hyhg ;;E hy(hy + hy)

(2.8) 2 \

T V(E—]
R XTEYN Vi

2
| R 4 — —_
ar M)+ Tog(hy + h4)T (&, n hy) =0,
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where (& 4 hy, n), (& 1 + k), (§— Dy, 5), (&, n—h,) are the four neighbors
of (&, ), and where the known values determined in Step 3 are inserted when-
ever possible. There results then a linesr algebraic system of m equations in
Vi, Viay ooy V. Solve this system.

Step 5. Lebt the Vi (k==1, 2, ..., m, m =1, ooy m -+ 1) generated in
Steps 3 and 4 represent the approximation on R v 8 of the v(&, ) which satis-
fies (2.5) and (2.6).

Step 6. Map each point (& 5) € R} c 8} into Ru 8 by means of (2.2).
Further, if (£, %) was numbered %, let its map (z, ) also be numbered k and set

@ ¥y )

=T = U, Y) = U,
w2+y2’;7;2+y2J (@, y) = U,

(2.9 Vi= V(& 5 = V[

Finally, on the points of R U S numbered 1, 2, ..., m, m -+ 1, ceny M Ay
let the Uy, k =1, 2, ..., m + » defined by (2.9) be the approximations to the
solution wu(z, ¥) of the given exterior DIRICHLET problem, and the method is
complete.

Diagram 2.1

One of the great advantages of Method E is that it is founded on an inte-
rior method, and because of the equivalence of the exterior and interior pro-
blems described, all the theoretical support for the approximation ¥, of v ex-
tends to the approximation U, of u. Thus (GREENSPAN, [4]) U (k =1, 2, ...,
m +- M), exists, is unique, and converges to wu(z, ) ad & — 0 provided u(z,y) €
eCRUS).
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To demonstrate the ease with which Method E can be applied, the following
illustrative example, typical of those run on the CDC 1604 at the University
of Wisconsin, is now presented.

Let § be th it square with vertices . - ! L

. i square wi rertices |-, — T L
e e the unmt square w € 2,2}, 2,2}/ 37 ZJ’
1 1 . . .
[?z , — 5] . Let (w, ¥) = (x>— y*)(@® -+ y?)~2 and consider the associated exterior

DiricHLET problem defined in Section 1. Under transformation (2.2), each
straight line segment of § maps into & semi-circle in the &— 5 plane and 8¢
is as shown in Diagram 2.1. From (2.4), it follows that

(2.10) w(§, n) = E—n*.

For the imterior problem then defined by (2.5) and (2.6), set (&, ;) = (0, 0)
and b = .02. Step 4 of Method E yielded a system of 25,649 equations in 25,649
unknowns, which, by symmetry considerations about both the & and 7 axes
reduced to 6512 equations in 65612 unknowns. The resulting system was solved

TasrLE 1.
£ " g y T | et
.0000 .0200 .0000 50.0000 .00040005 .00040000
.0400 .7600 .0691 1.3122 — .57600067 | — .57600000
.1400 .1800 2.6923 3.4615 — .01280012 | — .01280000
2600 .5809 1014 .6162 — 2.42880003 | — 2.42880000
.4200 .3400 1.4384 1.1644 .06080005 .06080000
.5000 0200 1.9968 L0799 .24960062 24960000
.6400 .2600 1.3412 .5448 .34200036 .34200000
1.1800 .3000 L7960 .2024 1.30240017 1.30240000

with a successive over-relaxation factor of 1.94. The number of iterations was
287 and the running time was 19 minutes 49 seconds. The numerical results,
when compared with the exact solution »(&, %) = &*—#® (which was known
for the given problem) were correct to at least six decimal places. For typi-
cal final results consult Table 1. '

Note also that if one wished to approximate u at certain fixed points of R,
then it would be desirable to generalize Method B by considering a non-uni-
form grid in Step 2. Of course this can be done in the usual fashion without any
loss of theoretical support.
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Note finally that Method E is formulated around an interior method which
is particularly suitable when §7is irregular, a complexity arising in the present
discussion from the application of inversion to §. Other interior methods suita-
ble to irregular 87 can be used in a similar way to construct new exterior methods.

3. = The Exterior Problem in E”.

Since the treatment of the exterior problem for Z* will be a direct generali-
zation of that for Es, our remarks will be directed primarily to 3. For this
purpose the notation « = w(z, y, ) on RU S, ¢ =p(z, y, 2) on 8, and du =
= Uy, & Uy - U, == 0 on R will be convenient. Under the inversion mapping

@ Y 2
K . e — P OTLI s $2J—’12-Lzz 0
(3-1) iy TRy e @t oyt 42t Ty e
or, equivalently,

& i v
39 & = Y == & o 2 2 1 2,_0
B v =aiprw VT E i e o’ § it 0,

let R -+ R?, S — S Define

oz, ¥, 2

(3.3) D&, n, v) :W,
(3.4) W,y ¥) = e 2 D)

. CVEgw £

where #, y, 2, &, 7, v ave related by (3.1), or equivalently, by (3.2). Then (PErrOV- '
SKY [1], p. 190), v(&, 5, ») is the solution of the interior DIRICHLET problem on
BEtu 8¢ for which @(&, 5, ») is the boundary function. Method E then extends
immediately by making the following meoedification. Consider the interior pro-
blem defined on R* u Sifor which @(&, 7, ») is given on §* and v, +v,, +v,, =0
is to be valid on R¢ Approximate v by ¥V by applying the three dimensional
generalization, (GREENSPAN [5], Ch. VI) of (2.8) in a fashion completely analo-
gous to that described in Method E. Finally, to approximate « by U apply
(3.4) with v, % replaced by V, U, respectively.

The difference then in the methods for £?* and E° lies in the multiplication
of V by 4/& 9% + »* to obtain U in E? a step which was unnecessary in Z*.

All the miqueness and convergence theorems are again valid for the exten-
ded numerical method. However, instead of giving next an example to demon-
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strate the ease with which the method can often be applied in E?, we shall
couple the ideas above with some further results to show how our method
vields divectly estimates of electrostatic capacity.

4. - Capacity. »

The electrostatic capacity C of a closed surface § is the charge which, in elec-
trostatic equilibrium on 8, raises the potential of § to unity. For analytical pur-
poses, then, it is usunally convenient to use the formula

1 rrou
, R el |
(4.1) | ¢ 41/ 5 4,
s

where ¢ =1 on 8, » is the solution of the associated exterior DIRICHLET pro-
ou , g .
blem for §, and a—:—: is the outward normal derivative of « on §. Analytical me-

thods, like those associated with isoperimetric inequalities, have bee napplied to
yield upper and lower bounds for C for a large number of special surfaces S (see,
e. g., Porya and Szea0 [3], Ch, III). We shall be concerned, however, with a high
speed computer technique for a direct estimation of (. For our purpose (4.1)
is relatively unwieldy and the following lemma will be of fundamental impor-
tance in finding a convenient replacement. The notation is that of Section 3.

Lemma 4.1.  Let R, be the interior of S and let the origin be a point in B+ *
Let v(&, n, v) and C be defined by (3.4) and (4.1), respectively. Then,
(4.2) ¢ =0, 0, 0).

Proof. It is known (KELLoG [5], p. 144, Theorem V) that

(4.3) C = im {u(a;, Yy 2) /2 Ly - z~} .

Vet vi b aior o
Then, since @® -+ y? - 2% == (&2 -+ 2 + »%)~1; it follows from (3.4) and (4.3)
that

(4.4) C= 1im & 7).

VB rer0

Sinece v(&, %, ») is continuous, (£.2) follows immediately from (4.4) and the lemma
is proved. )
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~ The significance of (4.2) from the computational point of view is that if
we wish to estimate the capacity ¢ of S, we need only invert the associated
exterior DIRICHLET problem as shown in Section 3 and approximate the har-
monic function v(&, #, v) at the origin to yield the result. From the point of view
of modern computational machinery, this can be done easily and in a highly
efficient manner. To illustrate the power of the method, we shall now approxi-
mate the capacity of a unit cube, a classical quantity about which extensive
analytical work has yielded only the bounds 0.632 <C € < 0.71055 (Pérya
and SzEcO [8], pp. 76-78).

Let 8 be the cube whose edges are parallel to the coordinate axes, whose
faces are parallel to the base planes, whose center is at (0, 0, 0), and whose edge
has unit length. In discussing the capacity of S, symmetry considerations allow
us to focus attention only on that triangular portion S, of 8 (consult Diagram
4.1) whose vertices are [O, 0, -;-}, [%, 0, ;:} , and B—, %, %] Under mapping
©(3.2), it follows that [0, 0, .;.J = (0, 0, 2), E 0, %] (1, 0, 1), [;_, %., %} -
— [?3 ) -zi, -g] and S,, — 8%, , where 8}, is the spherical region shown in Diagram
4.1. The problem is there by restricted to the bounded region R}, whose boundary
surfaces are S}, and the planes m,, m,, 7, whose equations are & =z, n =0,
& = . For fixed grid size k, a grid is constructed in R, (consult GREENSPAN
[4], pp. 84-87). At each resulting interior grid point (&, #, »), as shown in Dia-
gram 4.2, the LAPLACE analogue

V(& + by g, v) +

2
hihy  Rghy  Rgh hy(hy - hy)

e ) V&m0

2 2
ST V(S—l%z’ 7 ¥) b V(& 9+ Ry, ¥) —

T Tyl + 1) T gl - By

(4.5) 4

2
-+ ) v (&, 77“;7’4; ) V& m, v +hs) +

hy(hg + Ry Rl hs(hs + k)

2 .
Rolls + hg) V(& 5, v—hg) =0,

]

where (£ -+ hyy m, ), (§—hyy 9, 2)y (& 1 + By, 9), (& 9— Ty 9), (& 3, v + Ty)
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and (&, 5, v — h;) are the neighbors of (&, 5, v} is applied. At each boundary grid

(0,0,2)

©0,6,4)

Diagram 4.1

point on m;, =, and 7, (4.5) is applied with the appropriate symmetry condi-
tion. The known boundary values @ = (&2 9% 4 »%)~% on §i are inserted

(&, n, v+h,)
S8 -h )
v
s
e
4
d
4
7
(&-hym, v) (E,m,v) (E+hpn,v)
(&, nt h3, v)
(€,n, V‘hé)

Diagram 4.2
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wherever possible. The resulting linear equations are then solved in the spivit
of the illustrative example in Section 2. The computer need print out only
(0, 0, 0) = C.

The five cases actually computed corresponded to grid sizes h = .2, .15,
.1, .07 and .05, The first four were run on the CDC 1604 aud the fifth was run
on the ODC 3600, The respective values of ¢ which resulted were 0.66085,
0.66088, 0.66152, 0.66059 and 0.66098. We conclude that a reasonable est-
imate of ¢ is 0.661.
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Summary.

A digital computer technique is described for approwimating the solulion of the exter-
dor Dirichlel problem. The essence of the method is the combination of geometric
inversion with o method for approximating the solution of an dinterior Dirichlet prob-
lem. Two and three dimensional problems are discussed sepurately because each requ-
ires a different treatment of boundary data. The technique for three dimensions emtends to
higher dimensional problems. Application is made to the caleulation of electrostatic capacity
by reducing the wsual formula for capacity to one which requires only the evaluation at the
origin of the solution of a particularly simple interior Dirichlet problem. IFinally, the
capacily of a unit cube is estimated lo be 0.661.



