MARIO SERVI (*)

A Representation Theorem for «Regular» Hemimorphisms Between Boolean Algebras. (**)

Introduction.

In [3] I defined a regular function to be a normal and completely additive (see Jónnson and Tarski: [2]) function f from a complete Boolean Algebra \mathcal{A} to a complete Boolean Algebra \mathcal{A} such that $fx=0 \iff x=0$. The concept of regular function was meant to generalize that of point mapping between two sets, in a sense made precise in what follows. For the purposes of [3] it was convenient to bound oneself to complete Boolean Algebras and complete hemimorphisms, but I will presently abandon these restrictions, thus referring to the more general concept of regular hemimorphism.

Let S, S' be two (non void) sets, $F: S \to S'$. Consider the map F^* defined by: $F^*X = F(X) = \{ Fx : x \in X \}$. We have that:

$$(1) F^*X = \emptyset \iff X = \emptyset;$$

$$(2) F^*(X \cup Y) = F^*X \cup F^*Y, (X, Y \subset S).$$

If we indicate by $\mathscr{D}(M)$ the complete field of subsets of a set M, then (1) and (2) show that $F^*: \mathscr{D}(S) \to \mathscr{D}(S')$ is a special kind of hemimorphism between Boolean Algebras. In general, given two Boolean Algebras, \mathscr{A} , \mathscr{A}' , a function

^(*) Indirizzo: Istituto di Matematica, Università, Parma, Italia.

^(**) Ricevuto il 6-V-1966. Lavoro eseguito nell'ambito dell'attività dei Gruppi di ricerca matematici del C. N. R. (Gruppo n. 37, anno 1965-66).

 $f: \mathcal{A} \to \mathcal{A}'$ will be said to be a regular hemimorphism if

$$(1') fx = 0 \iff x = 0$$

and

$$f(x \lor y) = f \ x \lor f \ y, \qquad (x, \ y \in \mathscr{A}) \ .$$

[2]

Thus, (1), (2) prove that F^* is a regular hemimorphism: it will be said to be *induced* by the point function F. The natural question arises whether any regular hemimorphism is induced (up to isomorphisms) by a point mapping. The answer is affirmative: namely I will prove that there are representations (1) as fields of sets for \mathscr{A} , \mathscr{A}' , say (φ, S) , (φ, S') respectively, and there is a function $F: S \to S'$, such that $F(\varphi, x) = \varphi' f x$, $\forall x \in \mathscr{A}$.

The method used for this proof is, apart from a final trick, that of immerging conveniently the two algebras into complete fields of sets \mathcal{B} , \mathcal{B}' , then extending f to a function from \mathcal{B} to \mathcal{B}' . The path is now traced and most results come, practically « gratis », from those papers which deal with the extending of an additive operator in a Boolean Algebra (see, e.g., Jónnson and Tarski [2], Servi [4]).

The proofs given in section 2 are very similar to those contained in my paper [4], yet I prefer to repeat them (adjusted to the new more general situation (2) and with some minor changes) for the sake of clarity and completeness.

1. - Notations.

If M is any set, $\mathscr{D}(M)$ will indicate the field of all the subsets of M. If S, S' are two sets, $F: S \to S'$ and $G: S \to \mathscr{D}(S')$, then F^* , G^* will be the two functions from $\mathscr{D}(S)$ to $\mathscr{D}(S')$ defined respectively by:

(3)
$$F*X = \{Fx: x \in X\}$$

$$G*X = \bigcup_{x \in X} Gx$$

$$X \in \mathcal{B}(S)$$

⁽¹⁾ A pair (φ, S) is said to be a representation for a Boolean Algebra \mathscr{A} if S is a set and φ is a monomorphism of \mathscr{A} into $\mathscr{B}(S)$, the complete field of subsets of S.

⁽²⁾ In [4] the functions we dealt with were «endofunctions» (i. e. from an algebra A to the same algebra) and furthermore they were subjected to additional conditions, as that of being completely additive, so that here we are facing a twofold generalization.

Observe that F* and G* preserve (infinite) unions.

The restriction of a function f to a subset S of its domain will be indicated as usual by $f \mid S$.

2. — In this section $\mathscr A$ will be a field of subsets of a set S, $\mathscr A'$ will be a field of subsets of a set S', $f: \mathscr A \to \mathscr A'$ will be a hemimorphism and $F: S \to \mathscr B$ (S') will be defined by

$$Fx = \inf_{\substack{x \in \mathcal{A} \\ x \in x}} (x \in S).$$

We can now state the following

Theorem 1. $F^* \mid \mathscr{A} = f$ if and only if for every $\mathscr{F} \subset \mathscr{A}$

Proof.

If $F^* \mid \mathscr{A} = f$ holds, then (5) is an immediate consequence of the fact that F^* preserves unions (see above section).

Viceversa, observe first that $F^*X \subset fX$, for every $X \in \mathscr{A}$: the proof for this is quite obvious and in any case it is formally identical with that given in [4], thm. 3 (i). Let's now prove the converse inclusion $fX \subset F^*X$ $(X \in \mathscr{A})$. By contradiction, suppose there is an $x \in fX$ such that $x \notin F^*X$. By definition of F^* we get then:

(6)
$$\forall y \in X$$
, $\exists Y \in \mathscr{A}$ such that $y \in Y$ and $x \notin fY$.

Put $\mathscr{F} = \{ Z \in \mathscr{A} \colon Z \subset X \text{ and } x \notin fZ \}$. Then, by (6), we get $\bigcup_{z \in \mathscr{F}} Z \supset X$. The converse inclusion follows from definition of \mathscr{F} , therefore

Since $X \in \mathcal{A}$, by our assumption (5) this implies f(U|Z) = U f Z, i.e. f(X) = U f Z, and this is a contradiction, since f(X) = U f Z, but f(X) = U f Z, f(X) = U f Z, and this is a contradiction, since f(X) = U f Z, f(X) =

Remark.

If, roughly speaking, S is the dual space of \mathscr{A} , then we know that S is compact (in the topology having \mathscr{A} as a basis). There follows that condition (5) is always satisfied. To prove this, suppose $\mathsf{U}X \in \mathscr{A}$. Then $\mathsf{U}X$ is a clopen subset of a compact space, hence is compact: therefore the open cover \mathscr{F} has a finite subcover, say $\left\{X_1, \ldots, X_n\right\} \subset \mathscr{F}$, $\mathsf{U}X = X_1 \cup \ldots \cup X_n$. There follows: $f(\mathsf{U}X) = f(X_1 \cup \ldots \cup X_n) = fX_1 \cup \ldots \cup fX_n \subset \mathsf{U}fX$. On the other hand, $x \in \mathscr{F}$ $f(\mathsf{U}X) \supset \mathsf{U}fX$, since f is a hemimorphism, thus $f(\mathsf{U}X) = \mathsf{U}fX$. $x \in \mathscr{F} \quad x \in \mathscr{F}$

3. – Let \mathscr{A} , \mathscr{A}' be any two Boolean algebras, $f: \mathscr{A} \to \mathscr{A}'$ any hemimorphism, (φ', S') any representation for \mathscr{A}' , (φ, S) the STONE representation for \mathscr{A} . As a corollary of the preceding section, we then have that

Lemma 1.

There exists a function $F: S \to \mathcal{B}(S')$ such that

$$F^*\varphi = \varphi'f.$$

This is not yet the final goal, though, becouse F is not from S to S'. We now undertake an intermediate step for which regularity is needed.

Let $f: \mathscr{A} \to \mathscr{A}'$ be a regular hemimorphism and let S, S', φ, φ' be as before. Consider the set

$$N = \{ x \in S \colon Fx = \emptyset \}.$$

We claim:

Lemma 2.

(i) $S_0 = S \sim N$ is a representative set for \mathscr{A} , i.e. if ϱ indicates the trace homomorphism,

$$\varrho X = X \sim N \tag{X \in S},$$

then ϱ is an isomorphism of $\varphi(\mathscr{A})$ onto $\varrho(\varphi(\mathscr{A}))$;

(ii) if we define $F_0: S_0 \to \mathcal{B}(S')$ to be the restriction (to S_0) of F, then the following holds:

$$F_0^* \rho \varphi = \varphi' f$$
.

Proof.

For (i) it is enough to show that $X \sim N = \varnothing \Longrightarrow X = \varnothing$, $\nabla X \in \varphi(\mathscr{A})$. Let $X \sim N = \varnothing$, with $X \in \varphi(\mathscr{A})$; then $X \subset N$; since F^* preservers unions, it is an increasing function and hence $F^*X \subset F^*N = \bigcup Fx = \varnothing$. But $X \in \varphi(\mathscr{A})$, therefore $X = \varphi a$, for a suitable $a \in \mathscr{A}$, and hence, by (8), $\varphi'fa = F^*\varphi a = F^*X = \varnothing$. Since f is regular and φ , φ' are monomorphisms, there follows $X = \varnothing$.

As for (ii) we have:

$$F_0^* \varrho \varphi a = \underset{x \in \varrho \varphi_1}{\mathsf{U}} Fx \in \underset{x \in \varphi_a}{\mathsf{U}} Fx = F^* \varphi a = \varphi' f a.$$

The converse inclusion is proved as follows: let $y \in \varphi'fa$; then

$$y \in F^*\varphi a = \bigcup_{x \in \varphi a} Fx;$$

 $\exists x \in \varphi a, \text{ with } y \in Fx.$

Hence $Fx \neq \emptyset$ and thus $x \notin N$, whence $x \in \varrho \varphi a$. There follows

$$y \in \bigcup_{x \in \varrho \varphi a} Fx$$
,

and finally $\varphi'fa \subset F_0^* \varrho \varphi a$.

Remark.

Of course, becouse F_0 is the restriction to $S \sim N$ of F, we never have $F_0 x = \emptyset$, $x \in S_0$.

4. - Putting together the results of the two preceding sections, we have:

Lemma 3.

Let $f: \mathscr{A} \to \mathscr{A}'$ be any regular hemimorphism and let (φ', S') be any representation for \mathscr{A}' . Then there exists a suitable representation, say (φ_0, S_0) , for \mathscr{A} and a function $F_0: S_0 \to \mathscr{B}(S')$ such that

$$F_0^* \varphi_0 = \varphi' f$$

and

(10)
$$F_0 x \neq \emptyset \qquad (x \in S_0).$$

In order to get a point (single valued) function F, we again change representation for \mathcal{A} , but for the last time.

For each $x \in S_0$, put

$$S_x = \{x\} \times F_0 x (3).$$

Let π indicate second projection:

$$\pi(x, y) = y \qquad ((x, y) \in S_0 \times S').$$

Put $S = \bigcup_{x \in S_0} S_x$ and define $\varphi \colon \mathscr{A} \to \mathscr{B}(S)$ as follows:

(11)
$$\varphi a = \bigcup_{x \in \varphi_0 a} S_x \qquad (a \in \mathscr{A}).$$

My claim is that φ is a monomorphism and therefore (φ, S) is a representation for \mathscr{A} .

By straightforward computation one checks that φ preserves Boolean unions, 0, 1; to prove it preserves intersections, one has to use the fact that if $x \neq y$, then $S_x \cap S_y = \emptyset$ $(x, y \in S_0)$. Finally, suppose $\varphi a = \emptyset$. Since $F_0 x \neq \emptyset$ (lemma 3, formula (10)), also $S_x \neq \emptyset$; by (11) there follows $\varphi_0 a = \emptyset$ and hence a = 0, since φ_0 is a monomorphism. This proves φ is a monomorphism too.

Now, we have to define $F: S \to S'$. Since $S \subset S_0 \times S'$, it makes sense to define $F = \pi \mid S$. If we can prove

$$\pi^* \varphi = F_0^* \varphi_0,$$

then our aim will have been reached, thanks to lemma 3, formula (9).

We have:

Let $y \in F_0^* \varphi_0 a = \bigcup F_0 x$; then there exists an $x \in \varphi_0 a$ such that $y \in F_0 x$. Thus $(x, y) \in S_x \subset \bigcup S_z = \varphi a$. From this we get: $\pi(x, y) \in \pi(\varphi a)$, i.e. $y \in \pi^* \varphi a$. Thus we proved $F_0 \varphi_0 a \subset \pi^* \varphi a$.

Conversely, let y be an element of $\pi^*\varphi a$, i.e. of $\pi(\varphi a)$. Then

$$(12) y = \pi t,$$

for a suitable $t \in \varphi a$. By the definition of φ , there exists an $x \in \varphi_0 a$ with $t \in S_x$ and by the definition of S_x , there is a $z \in F_0 x$ such that t = (x, z). By (12), y = z, hence $y \in F_0 x$; from this and from $x \in \varphi_0 a$ we get $y \in U$ $F_0 u = F_0^* \varphi_0 a$ and equality is then proved.

⁽³⁾ Clearly S_x is a subset of the Cartesian product $S_0 \times S'$.

Taking into account formula (9), we can finally state our main theorem.

Theorem 2. Given any two Boolean Algebras \mathcal{A} , \mathcal{A}' , any regular hemimorphism $f: \mathcal{A} \to \mathcal{A}'$ and given any representation (φ', S') for \mathcal{A}' , there exists a suitable representation (φ, S) for \mathcal{A} and a function $F: S \to S'$ such that

$$F^* \varphi = \varphi' f$$
.

Remark.

If we give up the requirement that \mathscr{A}' be arbitrarily represented, then a simplification follows in section 3. Let (φ', S') be the Stone representation for \mathscr{A}' ; then the set N is empty, and we need not change representation for \mathscr{A} . The proof for this follows from compactness of dual space. Using notations of section 2, we have to prove that $Fx \neq \varnothing$, $\forall x \in S$. If it were $Fx = \varnothing$, by compactness there would exist a finite number of elements of \mathscr{A} , say X_1, \ldots, X_n , such that $x \in X_1 \cap \ldots \cap X_n$ and $fX_1 \cap \ldots \cap fX_n = \varnothing$. This implies $f(X_1 \cap \ldots \cap X_n) = \varnothing$, since f is an increasing function and, by regularity of f, $X_1 \cap \ldots \cap X_n = \varnothing$, a contradiction.

Bibliography.

- [1] PH. DWINGER, Introduction to Boolean algebras, Hamburger Mathematische Einzelschriften, Heft 40, Physica-Verlag, Wurzburg, 1961.
- [2] B. Jónsson and A. Tarski, Boolean Algebras with operator., I, Amer. J. Math. 73 (1951), 891-939.
- [3] M. Servi, Algebre di Fréchet: una classe di algebre booleane con operatore, Rend. Circ. Mat. Palermo to appear in fasc. 3°, vol. XIV.
- [4] M. Servi, Sull'estensione degli operatori di tipo V_{DD} , Univ. e Politec. Torino, Rend. Sem. Mat. Fis. 24 (1964-65), 125-136.

Summary.

A hemimorphism f between two Boolean algebras $\mathscr{A}, \mathscr{A}'$ is said to be regular if for every $x \in \mathscr{A}$, f = 0 is equivalent to x = 0. We prove that for any regular hemimorphism $f \colon \mathscr{A} \to \mathscr{A}'$ it is possible to find two sets S, S' and a function $F \colon S \to S'$ such that $\mathscr{A}, \mathscr{A}'$ can be represented as fields of subsets of S, S' respectively and the transform of f in these representations is induced by F.

Sunto.

Un emimorfismo f fra due algebre di Boole \mathcal{A} , \mathcal{A}' si dice regolare se fx=0 equivale ad x=0, per ogni $x\in\mathcal{A}$. Nel presente lavoro si dimostra che per ogni emimorfismo regolare $f\colon \mathcal{A}\to \mathcal{A}'$ si possono trovare due insiemi S, S' ed una funzione $F\colon S\to S'$ tali che \mathcal{A} , \mathcal{A}' siano rappresentabili come campi di sottoinsiemi di S, S' rispettivamente, e che la trasformata di f in tali rappresentazioni sia indotta da F.

