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A Representation Theorem for «Regular» Hemimorphisms

Between Boolean Algebras. (++)

Introduction.

In [3] I defined a regular function to be a normal and completely additive
(see JoNNsON and TARSKI: [2]) function f from a complete Boolean Alge-
bra <7 to a complete Boolean Algebra 27’ such that fo=0 <=> z=0. The
concept of regular function was meant to generalize that of point mapping
between two sets, in a sense made precise in what follows. For the purposes
of [8] it was convenient to bound oneself to complete Boolean Algebras and
complete hemimorphisms, but T will presently abandon these restrictions, thus
referring to the more general concept of regular hemimorphism.

Let §, 8’ be two (non void) sets, F': § — §'. Consider the map F* defined by:
F#X = F(X) ={ Fo: s € X}. We have that:

1) Y =g << X =g;
@) FHX uY)=F*X y F*Y, (X, Yc8).

If we indicate by Z(M) the complete field of subsets of a set M, then (1)
and (2) show that I'*: #(8) — Z(8') is a special kind of hemimorphism between
Boolean Algebras. In general, given two Boolean Algebras, <7, &/, a function

" (*) Indirizzo: Istituto di Matematica, Universitd, Parma, Italia.
(**) Ricevuto il 6-V-1966. Lavoro eseguito nell’ambito dell’attivitd dei Gruppi di
ricerca matematici del C. N. R. (Gruppo n. 37, anno 1965-66).
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f: of > o/ will be said to be a regular hemimorphism if

(1’) f./,v == { <==y 2 =0
and
(2 flevy) =faViy, @, y €.).

Thus, (1), (2) prove that F*is a regular hemimorphism: it will be said to
be induced by the point function F. The natural question arises whether any
regular hemimorphism is induced (up to isomorphisms) by a point mapping.
The answer is affirmative: namely I will prove that there are representations ()
as fields of sets for &7, &7/, say (g, S), (p,’ S') respectively, and there is a
function F: 8 — §', such that F(p #) = ¢'f x, Vo € «.

The method used for this proof is, apart from a final trick, that of immerging
conveniently the two algebras into complete fields of sets &, 4’, then extend-
ing f to a function from & to #’. The path is now traced and most results
come, practically « gratis», from those papers which deal with the extending
of an additive operator in a Boolean Algebra (see, e.g., JoNNsoN and TARSKI | 2],
SERVI [4]).

The proofs given in section 2 are very similar to those contained in my
paper [4], yet I prefer to repeat them (adjusted to the new more general situa-
tion (2) and with some minor changes) for the sake of clarity and complete- -
ness.

1. - Notations.

If M is any set, #(M) will indicate the field of all the subsets of M. If §,
8’ are two sets, F: 8§ — 8" and G: S — #(8'), then F*, G* will be the two
functions from Z(S) to #(8') defined respectively by:

(3) FeX={Fs: zcX}
(X e 2(9)) .
) G X = U Go
cE X

(1) A pair (p, S) is said to be a representation for a Boolean Algebra o7 if § is a seb
and ¢ is a monomorphism of g7 into (), the complete field of subsets of S.

() In [4] the functions we dealt with were « endofunctions» (i. e. from an algebra o7
to the same algebra) and furthermore they were subjected to additional conditions,
as that of being completely additive, so that here we are facing a twofold
generalization.
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Observe that F* and G* preserve (infinite) unions.

The restriction of a function f to a subset S of its domain will be indicated
as usual by f|S. :

2. — In this section £ will be a field of subsets of a set 8, .7’ will be a field
of subsets of a set 8, f: & — o7’ will be a hemimorphism and : 8 — & (8)
will be defined by

Fop =nfX (z € 8).
xXEA
r2EX

We can now state the following

Theorem 1. F*|sf =f if and only if for every F c of

) UXeod — fUX)=ufX.

XEF XEF e F

Proof.

It F=#| &/=f holds, then (5) is an immediate consequence of the fact thav
F* preserves unions (see above section).

Vieeversa, observe first that F'*X cfX, for every X € &/: the proof for
this is quite obvious and in any case it is formally identical with that given in
[4], thm. 3 (i). Let’s now prove the converse inclusion fX c F'*X (X € /). By
contradiction, suppose there is an » € fX such that z ¢ F*X. By definition of
F* we get then:

(6) VyeX, UYes/ such that yeY and v ¢fY.

Put ﬂ':{Ze&i: Z cX and w¢fZ}. Then, by (6), we get U Z> X. The

ZEF
converse inclusion follows from definition of %, therefore

(7) ) UZ=2X.

ZEF

Since X € &7, by our assumption (5) this implies f(UZ) =UfZ, i.e.
Z2EF zEF

fX = U{Z, and this is a contradiction, since z € fX, but = ¢fZ, VZ e&.

2EF
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Remark.
If, roughly speaking, S is the dual space of &7, then we know that § is com-
pact (in the topology having &7 as a basis). There follows that condition (5)

is always satisfied. o prove this, suppose UX € 27. Then U X is a clopen sub-
xeF YEF

set of a compact space, hence is compact: therefore the open cover & has a

finite subcover, say { X;, ..., X» }CF, UX = X, U ... u X, . There follows:

xeF
fuX) =f(X;u...u X, =fX5u...vfX, cufX. On the other hand,
XEF XEF

f(u X)o U fX, since f is a hemimorphism, thus f(U X) = U fX,

XEF  XEF : TEF  xEF

3. — Let &, /' be any two Boolean algebras, f: o/ — &/’ any hemimorphism,
(¢', 8') any representation for «/', (¢, S) the STONE representation for /. As
a corollary of the preceding section, we then have that

Lemma 1.
There exists a function F: S — B(S') such that

(8) Frp =g'f .

This is not yet the final goal, though, becouse I' is not from § to §'. We
now undertake an intermediate step for which regularity is needed.

Let f: & — &/’ be a regular hemimorphism and let §, §', ¢, ¢’ be as before.
Consider the set

N:{mes: o =0}
We claim:

Lemma 2.
i) S, =8 ~N is a representative set for o7, i.e. if o indicates the
trace homomorphism,

e X =X ~N (Xch),

then o is an isomorphism of (o) onto o(p(Z));

(ii) if we define Fo: Sy — Z(8') to be the restriction (lo S,) of Iy then the
following holds:

Frop =¢'f .
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Proof.
For (i) it is enough to show that X ~N=@ = X=g, VX e (7). Let
X ~N =g, with X ep(«/); then X c V; since F* preservers unions, it is

an increasing function and hence F*X c F*N = U Fs = @. But X € p{F),
TE N .
therefore X =qa, for a suitable @ € =7, and hence, by (8), ¢'fa = IMpa =

= F*X = g. Since f is regular and ¢, ¢’ are monomorphisms, there follows
X =g
As for (ii) we have:

Ffopa = U Fz c U Fo = F*pa = ¢'fa.

z€epr  z€ga

The converse inclusion is proved as follows: let y €¢'fa; then

¥y € F¥*pa = U Fux;

xS ga

He ega, with y € Fa.
Hence Fz = @ and thus « ¢ N, whence » € gpa. There follows

Yy eU Fg,
= opa

and finally ¢'fa c Fopa.

Remark.
Of course, becouse F, is the restriction to S~ N of F, we never have Fyr = o,
z €8,.

4. — Putting together the results of the two preceding sections, we have:

Lemma 3.

Let f: of — /' be any regular hemimorphism and let (¢, 8') be any
represeniation for o7'. Then there exists a suitable representation, say (@y, So),
for o and a function Fy: S, — Z(S") such that

(9) P, =o'f
and

(10) Foow =g (€8 .
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In order to get a point (single valued) function I, we again change representa-
tion for .7, but for the last time.
For each z e §,, put
Sy ={a} x Fyw(®.

Let s indicate second projection:

alz, y) =y ((w, y) € 8y x 8).
Put § = U 8, and define ¢: & — B(S) as follows:
xE S, : .
(11) gt = U 8, (¢ € ).

2 @t
My claim is that ¢ is @ monomorphism and therefore (p, S) is a representa-
tion for .

By straightforward computation one checks that ¢ preserves Boolean
unions, 0, 1; to prove it preserves intersections, one has to use the fact that
if w5y, then S,n8, =@ (» yekl,). Finally, suppose ¢pa = @. Since
F,z = @ (lemma 3, formula (10)), also S, = &; by (11) there follows g0 = &
and hence & = 0, since ¢, is a monomorphism. This proves ¢ is a mono-
morphism too.

Now, we have to define F: § — §'. Since § ¢ §, x &', it makes sense to
define F =x|S8. If we can prove ‘

wHp = F(T‘Pm

then our aim will have been reached, thanks to lemma 3, formula (9).

We have:
Let y € Ffpew = U Fyr; then there exists an # e such that y € Fw.
# € ot .
Thus (¢, ¥) € S, CU 8, = pa. From this we get: n(z, y) € n(pa), i.e. ¥ € x¥pa.
2E g

Thus we proved Fypa Cn¥pa.
Conversely, let y be an element of n¥pe, ie. of m(pa). Then

(12) y = at,

for a suitable ¢ € pa. By the definition of ¢, there exists an z ega with ¢ € 8,
and by the definition of §,, there is a 2z € ¥, # such that ¢= (z, 2). By (12),

4 = 2, hence y € F, z; from this and from @ €@, ¢ we get y € U Fou = Fip,a
uEpga
and equality is then proved.

(3) Clearly 8, is a subset of the Cartesian product S, x §'.
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Taking into account formula (9), we can finally state our main theorem.

Theorem 2. Given any two Boolean Algebras <7, 7', any regular hemi-
morphism f: of — &' and given any representation (¢, 8') for L', there exists a
suitable representation (@, S) for o7 and « function F: 8§ — 8 such that

F g =g¢'f.

Remark. :

It we give up the requirement that o/’ be arbitrarily represented, then
a simplification follows in section 3. Let (@', S’) be the STONE representation
for »7'; then the set N is empty, and we need not change representation for 7.
The proof for this follows from compactness of dual space. Using notations of
section 2, we have to prove that I'z = &, Vo € 8. If it were Fo = @, by com-
pactness there would exist a finite number of elements of <7, say X,, ..., X,,
such that 22X, n..nX, and fXin..nfX,= . This implies
f(Xyn..nd,) =g, since f is an increasing function and, by regularity of f,
X,n..nX, = @, a contradiction.
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Summary.

A hemimorphism | between two Boolean algebras of, of' is said to be regular if
Jor every x € o, fa=0 4s equivalent to x =0. We prove that for any regular
hemimorphism f: &7 — of ' it is possible to find two sets 8, 8’ and & function F: 8§ — §' .
such that of, o7’ can be represented as fietds of subsets of 8, 8' respectively and the
transform of f in these representations is induced by F.

"Sunto

Un emimorfismo | fra due algebre di Boole of, of' sidice regolare se fr=0 equi-
vale ad & = 0, per ogni z € of. Nel presente lavoro si dimosiva che per ogni emimorfismo
regolare [: of ~ of' si possono trovare due insiemi 8, §' ed uwna fumzione F: §— &'
tali che of, of' siano rappreseniabili come campi di sottoinsiemi di S, S rispettivamente,
e che la trasformata di f in tali rappresentazioni sia indotta da F.






