H. P. Dikshit (*)

On the Absolute Nörlund Summability of a Fourier Series. I. (**)

1. - Definitions and notations.

1.1. – Let $\sum a_n$ be a given infinite series with the sequence of partial sums $\{s_n\}$. Let $\{p_n\}$ be a sequence of constants, real or complex, and let us write

$$P_n = p_0 + p_1 + \dots + p_n$$
, $P_{-1} = p_{-1} = 0$.

The sequence-to-sequence transformation:

$$(1.1.1) t_n = \sum_{\nu=0}^n p_{n-\nu} \, s_{\nu}/P_n (P_n \neq 0)$$

defines the sequence $\{t_n\}$ of Nörlund means (1) of the sequence $\{s_n\}$, generated by the sequence of coefficients $\{p_n\}$. The series $\sum a_n$ is said to be summable (N, p_n) to the sum s if $\lim_{n\to\infty} t_n$ exists and is equal to s, and is said to be absolutely summable (N, p_n) , or summable $|N, p_n|$ (2), if the sequence $\{t_n\}$ is of bounded variation (3), that is, $\sum |t_n-t_{n-1}| \leqslant K$ (4).

^(*) Indirizzo: Department of Mathematics, University of Allahabad, Allahabad, India.

^(**) Sequel to: H. P. Dikshir, On the absolute Nörlund summability of a Fourier series, Proc. Japan Acad. 40 (1964), 813-817. — Ricevuto: 4-IX-1965.

⁽¹⁾ NÖRLUND [4]. See also WORONOI [10].

⁽²⁾ MEARS [3].

⁽³⁾ Symbolically, $\{t_n\} \in BV$; similarly by $F(t) \in BV$ (h, k) we shall mean that F(t) is a function of bounded variation over the interval (h, k).

⁽⁴⁾ Throughout this paper K denotes a positive constant, not necessarily the same at each occurrence.

1.2. — Let f(t) be a periodic function with period 2π and integrable in the Lebesgue sense over $(-\pi, \pi)$. We assume, without any loss of generality, that the constant term in the Fourier series of f(t) is zero, so that

(1.2.1)
$$\int_{-\pi}^{\pi} f(t) \, dt = 0 ,$$

and

(1.2.2)
$$f(t) \sim \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt) = \sum_{n=1}^{\infty} A_n(t) .$$

We write throughout

$$\varphi(t) = \frac{1}{2} \{ f(x+t) + f(x-t) \}, \qquad \lambda_{n,k}(t) = \frac{\sin(n-k)t}{n-k},$$

$$R_n = (n+1) p_n/P_n, \qquad S_n = \frac{1}{P_n} \sum_{\nu=0}^n \frac{P_{\nu}}{\nu+1}, \qquad c_n = \sum_{k=n}^{\infty} \frac{1}{(k+2)P_k},$$

 $\tau = [\pi/t]$, that is, the greatest integer not greater than π/t ; for any sequence $\{\sigma_n\}$, $\Delta\sigma_n = \sigma_n - \sigma_{n+1}$.

2. - Introduction.

2.1. – Concerning the summability $|N, p_n|$ of the Fourier series at a point, the following was proved by PATI.

Theorem A (5). If $\varphi(t) \in BV(0, \pi)$ and $\{p_n\}$ is a positive, monotonic sequence such that $P_n \to \infty$, as $n \to \infty$, and $\{R_n\} \in BV$ and $\{S_n\} \in BV$, then the Fourier series of f(t), at t = x, is summable $|N, p_n|$.

Recently, VARSHNEY proved the following.

Theorem B (°). If $\varphi(t) \in \mathrm{BV}(0,\ \pi)$, and $\big\{p_n\big\}$ is a positive sequence

⁽⁵⁾ PATI [5], [6]. This theorem contains as a special case a well-known previous result of Bosanquet, on the absolute Cesaro summability of a Fourier series. See Bosanquet [1].

⁽⁶⁾ VARSHNEY [9].

such that $P_n \to \infty$, as $n \to \infty$, $\{R_n\} \in BV$ and

$$(2.1.1) P_n c_n \leqslant K (n = 0, 1, 2, ...),$$

then the Fourier series of f(t), at t = x, is summable | N, p_n |.

It has been very recently shown by PATI that in Theorem A the condition of monotonicity of $\{p_n\}$ and $(P_n \to \infty)$, as $n \to \infty$ as $n \to \infty$ can be easily avoided, that in Theorem B $(P_n \to \infty)$, as $n \to \infty$ is implied by condition (2.1.1), and that the sets of conditions:

"\{\begin{aligned} & \{R_n\} \in \text{BV} \text{ and } & \{R_n\} \in \text{BV} \text{ and } & (2.1.1) \text{ are equivalent (7).} \]
It may be remarked that the case: "\{\begin{aligned} p_n\} \text{ is monotonic non-increasing } \text{is the most important in view of the fact that it covers the case \$p_n = A_n^{\delta - 1}\$, \$0 < \delta < 1\$, giving the result of \$| \text{C}\$, \$\delta | \text{ summability for the Fourier series of } f(t) \text{ at } t = x. \end{aligned}

We give here a very brief proof of the Theorem B for this case, i.e., when $\{p_n\}$ is monotonic non-increasing.

2.2. - We require the following lemmas.

Lemma 1 (8). Uniformly for $0 < t \le \pi$,

$$\left|\sum_{v=m}^n \frac{\sin vt}{v}\right| \leqslant K,$$

where m and n are any positive integers such that $n \ge m$.

Lemma 2 (9). If $\{q_n\}$ is non-negative and non-increasing, then, for $0 \le a \le b \le \infty$, $0 \le t \le \pi$, and any n:

$$|\sum_{k=a}^b q_k e^{i(n-k)t}| \leqslant K Q_{\tau}$$
,

where $\tau = [\pi/t]$, and $Q_n = q_0 + q_1 + ... + q_n$.

⁽⁷⁾ See Pati [7].

⁽⁸⁾ TITCHMARSH [8], § 1. 76.

⁽⁹⁾ McFadden [2], Lemma 5.11, p. 182; this is originally due to Hille and Tamarkin.

3. - Proof of Theorem B for monotonic non-increasing $\{p_n\}$ (10).

As in Pati [5], it is enough to show that, uniformly for $0 < t \leqslant \pi$,

$$\sum \equiv \sum_{n=1}^{\infty} \frac{1}{P_n P_{n-1}} \left| \sum_{k=0}^{n-1} \left(P_n p_k - p_n P_k \right) \lambda_{n,k}(t) \right| \leqslant K ...$$

Now:

$$\begin{split} \sum & \leq \sum_{n} \frac{1}{(n+1) \, P_n \, P_{n-1}} \, \big| \, \sum_{k=0}^{n-1} \, \big\{ P_n \, p_k \, (k+1) - p_n \, P_k \, (n+1) \big\} \, \lambda_{n,k}(t) \, \big| \\ & + \sum_{n} \frac{1}{(n+1) \, P_n \, P_{n-1}} \, \big| \, \sum_{k=0}^{n-1} \, \big\{ P_n \, p_k \, (n+1) - P_n \, p_k \, (k+1) \big\} \, \lambda_{n,k}(t) \, \big| \\ & = \sum_{1} + \sum_{2} \, , \quad \text{say.} \end{split}$$

We have:

$$\begin{split} \sum_{2} &= \sum_{n} \frac{1}{(n+1) P_{n-1}} \mid \sum_{k=0}^{n-1} p_{k} \sin (n-k)t \mid \\ &\leq \sum_{n=1}^{\tau} \frac{1}{(n+1) P_{n-1}} \mid \sum_{k=0}^{n-1} p_{k} \sin (n-k)t \mid \\ &+ \sum_{n=\tau+1}^{\infty} \frac{1}{(n+1) P_{n-1}} \mid \sum_{k=0}^{n-1} p_{k} \sin (n-k)t \mid \\ &= \sum_{21} + \sum_{22}, \text{ say.} \end{split}$$

Also, since

$$|\sin (n-k)t| \leqslant (n-k)t \leqslant nt,$$

we have

$$\sum_{21} \leqslant t \sum_{n=1}^{\tau} \frac{n}{(n+1) P_{n-1}} \sum_{k=0}^{n-1} p_k$$

$$\leqslant Kt\tau$$

$$\leqslant K.$$

⁽¹⁰⁾ That the hypothesis: (2.1.1.) of Theorem B is equivalent to $\{S_n\} \in B$, i.e., $\{S_n\}$ is a bounded sequence, whenever $\{p_n\}$ is a positive sequence and $\{R_n\} \in BV$, has been pointed out recently in: H. P. Dikshit, Absolute summability of a Fourier series by Nörlund means, forthcoming in Math. Z.

By virtue of Lemma 2,

$$\sum_{22} \leqslant K P_{\tau} c_{\tau} \leqslant K$$

by hypothesis (2.1.1). Lastly,

$$\begin{split} \sum_{1} &= \sum_{n=1}^{\infty} \frac{1}{(n+1) \, P_{n-1}} \mid \sum_{k=0}^{n-1} P_{k} \left(R_{k} - R_{n} \right) \, \lambda_{n,k}(t) \mid \\ &= \sum_{n=1}^{\infty} \frac{1}{(n+1) \, P_{n-1}} \mid \sum_{k=0}^{n-1} P_{k} \, \lambda_{n,k}(t) \sum_{v=k}^{n-1} \Delta R_{v} \mid \\ &\leqslant \sum_{n=1}^{\infty} \frac{1}{(n+1) \, P_{n-1}} \sum_{v=0}^{n-1} \mid \Delta R_{v} \mid \mid \sum_{k=0}^{v} P_{k} \, \lambda_{n,k}(t) \mid \\ &\leqslant K \sum_{n=1}^{\infty} \frac{1}{(n+1) \, P_{n-1}} \sum_{v=0}^{n-1} \mid \Delta R_{v} \mid P_{v} \;, \end{split}$$

by ABEL's Lemma and Lemma 1,

$$= K \sum_{\nu=0}^{\infty} |\Delta R_{\nu}| P_{\nu} c_{\nu}$$

$$\leq K \sum_{\nu=0}^{\infty} |\Delta R_{\nu}|, \quad \text{by (2.1.1)},$$

$$\leq K.$$

by the hypothesis $\{R_n\} \in BV$.

I wish to express my warmest thanks to Dr. T. Pati, of the University of Jabalpur, for his kind interest.

References.

- [1] L. S. Bosanquet, Note on the absolute summability (C) of a Fourier series, J. London Math. Soc. 11 (1936), 11-15.
- [2] L. McFadden, Absolute Nörlund summability, Duke Math. J. 9 (1942), 168-207.
- [3] F. M. Mears, Some multiplication theorems for the Nörlund mean, Bull. Amer. Math. Soc. 41 (1935), 875-880.

- [4] N. E. NÖRLUND, Sur une application des fonctions permutables, Lunds Univ. Årsskr. 16 (1919).
- [5] T. Pati, On the absolute Nörlund summability of a Fourier series, J. London Math. Soc. 34 (1959), 153-160.
- [6] T. Pati, Addendum: On the absolute Norlund summability of a Fourier series, J. London Math. Soc. 37 (1962), 256.
- [7] T. Pati, On the absolute summability of Fourier series by Norlund means, Math. Z. 88 (1965), 244-249.
- [8] E. C. TITCHMARSH, Theory of Functions, Oxford University Press, Oxford 1949.
- [9] O. P. VARSHNEY, On the absolute Nörlund summability of a Fourier series, Math. Z. 83 (1964), 18-24.
- [10] G. F. WORONOI, Extension of the notion of the limit of the sum of terms of an infinite series, Ann. of Math. 33 (1932), 422-428.

* * *