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The Classical Ergodic Problem and the Restricted One:

a General Solution. (%)

1. - Introduction.

The aim of the present paper is to clarify the meaning of a recent result
obtained by B. ForTE (see [6]) from the point of view of the statistical mechan-
ics. We shall remember first some definitions and properties of dynamical
systems.

Consider a dynamical olonomic system with # degrees of freedom. The sys-
tem is described by n generalized coordinates (g, ..., q,) and the generalized
momenta (py, ..., P,). Let L be the set of points w = (g1, ...y Gny P1y -ooy Pa) Of
the space R** consisting of real numbers and defining possible states for the
system. The motion of the system is deseribed by the classical HAMIITON'S
equations. Let be H the Hamiltonian of the system; we shall suppose that:

a) H doesn’t depend on ¢ explicitly;

b)  H is such that for every point w € Q the equations of motion have
a unique solution.

As a consequence, for each point w € 2 and for every value of the variable ¢
there is a unique point w, = T, w which characterizes the state of the system
at the time ¢ with respect to the initial state defined in 2 by the point w. Fur-
ther the transformations T, are an abelian group of one pmameter transfor-
mations (see [1], p. 56).

(*) Indirizzo: Istituto Matematico, Universitd, Via Savonarola 9, Ferrara, Italia.
(**) Supported by C.N.R., Research Group n. 7. — Ricevuto: 25-V-1966.
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We shall associate to 2 the structure of a measure space by introducing a
o-algebra & of subsets of £2 (events), (e.g. the o-algebra of L-measurable subsets,
if such is 2) and define on this ¢-algebra a measure of probability m. We shall
suppose that this measure of probability is invariant under the group of trans-
formations 7, .

A random dynamical system in statistical equilibrium is a system defined
by the space £ (phase space), by the family of transformations 7', which charae-
terizes the motion of the representative points in the phase gpace, by the set
of events & and by the invariant measure of probability m.

Consider now any microscopic state function of the system, or an arbitrary
measurable mapping of (2, &) into (R,, &), where R, is the set of real num-
bers, & the o-algebra of the BorEL sets of E,; we shall denote it by f(w). Thus
the coneept of microscopic state function is the same as the concept of random
variable on the probability space (2, &, m).

By time average of the function f(w) along the path passing through the
point w € Q2 we mean the limit, if such exists:

lim [ f7,0)

t—>4eo T
n

let denote it' by f(w).

What is said about the group of transformations 7', can be restricted to the
abelian subgroup of the powers {T"} of a transformation 7' which coincides
with a transformation 7', at a fixed value of the parameter ¢ (see [3], p. 3).

Remember that, if V is an invariant part of finite measure of 2, i.e. such
that T-1V =V and m V< 4 oo, and f(w) is integrable on ¥V and defined
for each point P €V, then f(w) exists almost everywhere on ¥V and depends
only on the path.

If V is an invariant part of finite measure of £, we define phase average of
the function flw) on V the quantity, if such exists:

-~ 1
= oy [ ) av.

We shall say with KHINCHIN (see [2], p. 66) that the function f(w) is rergodie
on V if for almost all paths in V the time average is the same, and coincides
with the phase average, i.e. if ]/‘\ =7.

The ergodic problem consists in finding ergodic phase functions associated
to a given dynamical random system, i.e. phase functions which generate, by
their average, the macrosecopic state functions (see [1], p. 10).
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The. classical ergodic problem is the following: characterize the dynamical
systems for which all integrable microscopic state functions are ergodic. The
solution is given by the Birxorr’s theorem:

Let V be an invariant pari of finite measure of Q. Every integrable micros-
copic function is ergodic if and only if V 4s metrically indecomposable, i.e. ¥V
can’t be represented in the form V = V' 4+ V", where V' and V" are invariant
disjointed parts of positive measure.

The BIrxorrF’s theorem doesn’t characterize, for a given dynamical system,
the ergodie microscopic state functions; it characterizes the dynamical random
systems for which every microscopic state function is ergodic.

The restricted ergodic problem, on the contrary, consists in finding all the
microscopic state functions which are ergodic for a given dynamical random
system. About such problem, a first successful result has been obtained only
by sufficient conditions (see [2], [5], [7])-

The point of views of the classical ergodic problem and the restricted one
are quite different. We believe, following a recent result (see [6]), that these
problems may be solved together. In fact, our design is to elaborate the
contents of the paper by B. ForrE (see [6]) and to show that one may
derive the BIRKOFF's ergodic theorem from a general solution of the restricted
ergodic problem. Thus we get a joint solution of the classical and the res-
tricted ergodic problems.

2. - The general ergodic problem.

Given a probability space (22, &, m) and a measurable space (I, ¥), where &
is a g-algebra of subsets of I', consider a measurable transformation § of (2, %)
into (I, ¥) (see [4], p. 162).

Let M be the measure induced on ¥ by the measurable transformation S;
thus, for each G € ¥, is M(G) = m(S* G).

Moreover, let F be the collection of random variables defined on (I", ¢, M),
i.e. the collection of measurable mappings of (I, ¢) into (R,, &).

B. ForrE (see [6]) has derived a necessary and sufficient condition for er-
godicity with respect to a given measurable transformation 7 of Q onto £,
of all random variables of ¥, when the measurable transformation § is defined
by a given random variable f(w). This result ean be extended to the case of an
arbitrary measurable transformation S of (@2, &) into (I', %), i.e. we can given
a necessary and sufficient condition for all random variables of F to be erg-
odic with respect to a given measurable transformation 7 of £ onto Q.
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In fact the transformation 7' induces, by the given measurable transfor-
mation §, a transformation U of 802 into I". This transformation U, is defined,
for each subset C of S22, by the relation:

U, ¢ =8T8C.
Let U be defined on the whole I" and for each subset € of I'— 8Q:
v, C=2¢.
For each subset ¢ of I" is thus:
U, 0=8T81Cn8Q +-Cn(I'—809).
A set C of I is invariant under the transformation U, if:
U;'C=0.
In particular, both sets S and I"— SO, as well as each set ¢ ¢ I'— 8Q, are
invariant. Given a set V €4, invariant with respect to the given measurable
transformation 7, i.e. such that 7'V = V, let M’ be the measure defined on
the g-algebra & of the subsets G of I" by the following relation:

M@ =m(V nS1E)

and M" the measure defined on the same ¢-algebra of sets by:
MGy = m[(R—V)n 82 4].

Theorem. A necessary and sufficient condition for a function @ € F to
be ergodic, 1i.e.
A 3
@(w) = const . in (Q, #, m),

18 that
MGy M = M"(G) M)

for each invariant set Ve, and each G € G ().
(1) If we consider the group of transformations 7, instead of the group {T”} the

condition for ergodicity is the same, where of course an invariant set V is a set for which
T;* V =V for every t.
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The proof is contained in [8], where one needs only to change the meaning
of the symbols.

We ghall say that a measurable transformation § of (2, &%) into (I, %)
is ergodic with respect to the transformation 7' if it satisfies the condition of
the theorem just mentioned; this is in full analogy with the classical case for a
transformation T which satisfies the condition of the Brrxorr’s theorem.

We shall prove that, if we consider the particular transformation § = T
of (2, #) onto (2, F), the established condition for a random variable ¢ € I/
to be ergodic is the same as the classical condition for a transformation 1’ to
be ergodic. The classical condition for ergodicity is therefore a particular case
of the given condition, if we of course identify the general transformation §
with the measurable transformation 7 of (2, #) onto (2, #).

(learly, if the transformation 7' is ergodic in the sense of BIrRKOFF and 1
is an invariant set for it, then necessarily m(V) =0 or m(V) = 1. Thus we
have, for any decomposition of £ into two invariant disjointed sets V', V",

m(V') =0, m(V") =1.

Let @ be any measurable subset of £ and ', 3" the measures associated to ¢
as mentioned above. It is:

MN(G) = m(V' n T G),

M"G)=m(V'n T @) =m[(Q— V') n T G].

Therefore
M@ =0, MG = m(T G),
and similarly
M) = m(V' nT10) =0, M) =m(V"'nT10) =1,
It follows
MGy M"(Q) = 0, M@y M) =0,

so that
M@ Q) = M"(G) M)

for each G € & and each choice of the invariant get V' in Q.

Thus, if T is ergodic in the sense of Birkorr, T is ergodic also with respect
to itself.

Conversely, suppose that for each ¢ € # and every invariant set V' of 0 is:

MG M(Q) = M"(G) M'(Q).
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We shall prove that either m(V’) = 0 or m(V") == 1. Thereafter we shall conclude
that if the transformation T is ergodic with vespect to itself, it is ergodic in
the sense of BIRKOFF.

In fact, let exist in 2 & set V', invariant under the transformation 7' and
such that m(V') == 0 and m(2— V') == 0. Consider the set G = V’. It is clear
that:

ﬂf’(G) = rm,(V’ n 17_1 V') - ,m(Tf/),
M@ =m[(R—TV)nT2TV']=0,
M) = m(V' n T Q) = m(V"),

M) =m[(Q—TVYnT1Q] =m(Q— V).
Therefore:
MG M"(Q) = m(V)ym(Q—T') %0,

M@ M(Q) =0,

i.e. the transformation 7' is not ergodic with respect to itself.
From this it follows the full equivalence of the two conditions for ergodicity,
with S = T.

3. - Intrinsic character of the ergodicity’s condition for Hamiltonian systems.

Consider two measure-spaces (2, %, m) and (Q, &, m).

Let Q be, as well as 2, a subset of R*» and & a o-algebra of subsets of Q
(for instance the g-algebra of the L-measurable subsets of (, if such is 0Q); let
m be a probability measure defined on the c-algebra .

Let B be a one to one measurable transformation of Q onto , such that
to every set A €& corresponds a set 4 €. In particular RQ = 0.

Suppose further that R is measure-preserving, i.e. for every set A4

mR14=mAd
(m R~* is the measure induced by m on the c-algebra ).
The measurable transformation 7' of 2 onto Q induces, by the measurable
transformation R of Q onto Q, a transformation 7 of O onto . This transfor-

mation 7 is defined, for each set 4 €4, by the relation

TA=RTR'4
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which is clearly measurable, as a product of measurable transformations.. Tt
preserves moreover the measure in . We have indeed:

m(TA) =mERBITA) =m(TRIA) =mBL14A)=mA.

The transformation R has further the following properties: every set V e&
invariant under the transformation 7, i.e. such that 7-1 ¥= V¥ has an image
RV =7V e%, invariant under the transformation 7, i.e. a set V €%, such
that 7-1 7= V; conversely every set V €% invariant under the transform-
ation 7' (7~* ¥ = V) has as inverse image V= R-! ¥ invariant under the trans-
formation 7' (T V = V).

Let § be a measurable transformation of (R, #) into the measurable space
Iy, 9) (%, as usual, is a g-algebra of subsets of I'). By the transformation R
of (2, #) onto (Q, #) we get a transformation § BR-1 of §. into I". Given any
set @ € ¥ we have S-* G % and (R)* 8@ =R 811G € %. The transfor-
mation § RB-* of O into I" is therefore a measurable transformation of (,0 %)
into (I, %). One can prove that, if the measurable transformation R is ergodic
with respect to the transformation T, then the measurable transformation § R
is ergodic with respect to the transformation 7.

Suppose indeed that the transformation R is ergodic with respect to the
transformation 7. The conditions of the above mentioned theorem are then
satisfied and we can say: if V is an arbitrary set of &, invariant under the mea-
surable transformation 7, define the measures M’ and M" on the o¢-algebra
of the subsets G e & by

M(G) = m(V n 8 @), MY(G) = m[(2 — V) n 8§ 6].

If follows
(@) MUT) = M@ M),

We shall prove that the transformation § R-1 is ergodic under the transform-
ation 7, by verifying that if ¥V is a set of &, invariant under the measurable
~ transformation 7' and JI', D" are the measures defined on the o-algebra & of
the subsets G of I" by

MG =m(V nR S &), (@) = 17@[@;—— ¥)n R 81 @],
then
Gy M) = "G ().

In faet the inverse image of any set V e# invariant under the transformation
T is, as we have seen, a set V € invariant under the transformation 7'; mox-
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eover, since the transformation R is one to one, for every set @ € ¥ we have
VANRSTG=RVNRSIG@=RTVnS1G).

Since the transformation R is measure-preserving, it follows
m(V 0 RS81G) =m[R(V nS*GE)]=m(VnsS*a).

The first term of these equalities is, by definition, M'(G) and the last one is
MG). If follows that, for every G e @

(@) = M),
In particular for G = I" we get
Iy = M/(T).

Similarly, for the difference Q— V and the corresponding difference @ — ¥
we have

m[(Q— V)N RS 1G] =m[(R—7V)n sG],

therefore
U"G) = M"(&) for each G e .

‘In particular for G=1I we get
) = M.

Thus, if the transformation § is ergodic with respect to the transformation 7,
i.e. if for every invariant set V and for every set G € ¢ we have

M@ MYy = M@ (),
we shall also have
MG M) = M@ M) .
This states that the transformation R~ § is also ergodic with respect to the trans-

formation 7.
Since the canonical transformations of k2 onto K** satisfie the hypotheses
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for the preceding result to be valid, we derive that the ergodicity condition men-
tioned above is invariant under such transformations. Therefore this condition
of ergodicity states an intrinsic property for every dynamical system.

4. « Conclusion.

All that has been developped in the preceding paragraphs about the condition
of ergodicity resolve both the restricted and the classical ergodic problems.
We believe that this condition may be very useful in finding those dynamicdl
systems for which given microscopic state functions are ergodic.
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Summary.

On the basis of a solution of the resiricted ergodic problem, we show that this problem
conlains the classical ergodic problem and that they are solved by the same condition of er-
godicily. We demonstrate moreover that this condition of ergodicity is intrinsic for every
given dynamical system.

Riassunto.

Sulla base di un risultato precedente, che risolve il problema ergodico ristreito, si ri-
conosce che tale problema contiene il problema ergodico classico ed & risolto dalla stessa
condizione di evgodicita. Si dimostra altresi che iale condizione di ergodicita é imtrinseca
per ogni dato sistema dinamico.






