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G . C.N. KULSHRESTHA (%)

Summability Factors for Generalized

Strong Riesz Logarithmic Boundedness. (**)

1.1. - Definitions and netations.

Let > a, be a given infinite series, fmd let s;; denote the nth CEsARO mean
of order » (x> —1) of the sequence 13,, }, where s, == 3 is the nth partial
sum of the series Y a,

If

(1.1.1) 21 li" = O(log n) ,

as n — oo, then > a, is said to be strongly bounded by logarithmic means
with index 1, or bounded [R, log=, 1], symbolically

> a, = 0@1)[R, logn, 1].

If for » >—1,
S s3]

(1.1.2) >

ym1 P

-]
A

= O(IOg n),

as n — oo, we shall write, by analogy,
S a, = 0(1) [(R, logn, 1) (C, #)].

(*) Indirizzo: Department of Post-Graduate Studies and Research in NIathematiCS,

University of Jabalpur, Jabalpur, India.
(**) This paper is part of the author’s Thesis approved for the Ph. D. degree. —
Ricevuto: 14-XI-1964. :
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We observe that when = = 0, summability (C, 0) is the same as conver-
gence, and (1.1.2), in that case, reduces to (1.1.1). Thus boundedness [(R,
log n, 1) (C, 0)] is the same as boundedness [R, log =, 1] .

For any sequence { /1,,}, we write throughout, for n =1, 2, 3, ...,

Auln :)‘ny Aln :Al 2-,, :}'n“—zn'{*ly A2 Zﬂ:A(Az'n)y

and in general,
A2 A, = A(d»-1 4,), for p>1.

We have the useful identity (o integral)

(1.1.3) A% ey = f, (:) (—1) ayy-

1.2. - Introduction.

The well known consistency theorem for CESARO summability asserts that
every infinite series which is summable (C, %), % >—1, is also summable (C, »')
for »' >, symbolically,

(C, %) c(C, ), ’ o > >—1.

It is natural to expect such a consistency theorem also for the generalized
strong Riesz logarithmic boundedness, defined above as boundedness [(R,
log n, 1) (C, #)]; in other words, it is natural to expect the result that if 3 a, =
= 0(1) [(R, log n, 1) (C, %)], x >—1, then ¥ a, = 0(1) [(R, log n, 1) (C, »]
for every x' > . ' ’

In this paper, in the form of Theorem 1, we establish this result for the case
s >—1.

As can be easily verified by considering the series > (— 1) - n, bounded-
=1

ness [(R, log n, 1) (C, 1)] may be true and yet boundedness [R, log n, 1] may
not be true. Hence arises the question of choosing such factors &, as will make
the series 2 a, &, bounded [(R, log =, 1) (C, ,c)] whenever Y a, is bounded [(R
log n, 1) (C, #')] for << «'.

We prove, in the form of Theorem 2, a result which provides an answer
to this question in the case in which % and %’ are both positive integers and
0 < <o '

2.1. — We establish the following theorems.
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Theorem 1. If #>—1, and Y a, = 0(1) [(R, logn, 1) (C, )], then
> a, = 0@1) [(R, logn, 1) (C, #')], for every 2 >x.

Theorem 2. If % and %' are positive integers such that: 0 < u< #,
and D, a, = O(1) [R, log n, 1) (C, %')], and if the factor sequence {s"} satisfies

the conditions:

(2.1.1) } &n [ = g, 18 monotonic non-increasing,

n
(2.1.2) Slogu-dr7" | e,
u=1
as n — oo, and

(2.1.3) Slogu-AZ+ - | 47 e, | =0(1),

=1
as n—>oco, then > a, e, = O(1) [(R, logn, 1) (C, 2)].
2.2. — We need the following lemmas.
Ler;lma 1. If o>—1, 0—6>0, then

kel Aﬁ_ P hed Aﬁ 1

2 >

n=g W Az - et (10 - 'u) ‘Az_l_# - ﬂ.Ag—a..l .

Lemma 2. If >0, and {&,}={|¢,|} is a monotonic non-increa-
sing sequence such that

leogy-Ai e, | = O(log n)
=
as n — oo, then g, = o(1).

Proof. Let g, = o(1). Then ¢, + o(1), that is, limz, = 0. But this

- s>
limit which surely exists, since {8#} is monotonic non-increasing and with
rough lower bound zero, is greater than or equal to zero. But as stated above

(1) Camow [1], Lemma 1. Also cf. PEyErIMEHOFF [3], p. 418, fooinote (3).
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it is not zero. Hence lim ¢, is greater than zero. Call it 6,. Then each ¢, > 6, >0,

> @

and therefore,

Zlog;L'Az' I &, I > 51'210gy'z12
a=1

#=1

>K->logpu>K-n-logn (2.

ne=1
This completes the proof of the lemma.

Lemma 3. If »is ¢ positive integer, A"+ g, = o(1), and

> log g A+ !A"“ £, l = 0(1),
u=1

as n — oo, then

f©

Slog - AnF [ Aviz g, | = O(1),

pe=1
as n —> oo, for every integer p such that —l<p<
Proof. Since 4™ ¢, = o(l), we can write

@© «©
Sdrire, =3 (A g, — A g, ) = A7 g,

y=p y=p

Therefore, we have

n <«

Slogu-Al-| Arte, | < Slogu-A7-3 [+, |
b= y=p

u=1 1

<§ lA’+2 e, ] -ilog,u.'AL<§: *A'“ g, ‘ -log v - Ev:Aﬂ'
’ p=1 y=1 :

pe=1 p=1

<3 |drte, | logr- Al =0(1),
p=1

as # —> oo, by the hypothesis.

{2) Throughout this paper, & denotes an absolute positive constant, not necessarily
the same at each occurrence. Cf. Patr [2], p. 295, line 15, first inequality.
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Similarly, by repeated application of the above process, we can have
i ,
. A49+1 +2
S log g AZFL | A7 :, | = 0(1)
p=1

as n — oo, for —1 << p<<r.
This completes the proof of the Lemma 3.

Lemma 4. If d>0 and

n
Slogu-As- |e, | = O(logn),
p=1
as n > oo, then

Slogu-A%-| A% e, | = O(log n)

n==1
as n — co, for every integer o> 0 .

Proof. Since 4A°e, = Z ( )(—-1) “€a4; » We have

i=0
n n g o
> logp-A%- [ 4° ¢, ] < Z log - A5 z (7> | &ups]
u=1 u=1 =0

== i() 210g/LA 18”+jl:0(10g’n)7

pu=1

as 7 —» co, by hypothesis.

31. — Proof of Theorem 1. We have to show that, if (1.1.2) holds
for every » >--1, then

(3.1.1) z = O(log n) ,
as N — co.
We have
Z | g (A7) |8 ] = 2 (v A%y EA""”' s

pe=1

n v
<> AN 3 AT A | s
p=1 ©=0

- n 1/——-/—-1

n
=3 aplal 32

=1 y=p
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# o A HN 'l i
SE-3 A% | i | (u- A by Lemma 1,

p=1

(log n) ,

as % — oo, by hypothesis.
This completes the proof of Theorem 1.

We have to show that, if (3.1.1) holds

8.2. — Proof of Theorem 2.
for an integer ' (%' > > 0), then

(3.2.1)
p=1

as n — oo, where 57 is the »th CESARO mean of an integer order # of the factored

series > a,&,.
Writing S* for the »th CzsAro sum of order x of the series z t,E,, We have

v

e =347 _u(a, 8,)

=t
p—1 u

=S 4,47, e Say - [, X .
#=0 A=0 /l=-0

= z /_11 (47_, e, 8, , Dby partial summation once,

u=90
=3 8% A% (47 ,-e,), Dy repeated partial summation -1
u=0
times, where %' =1, 2, 3, ....
Therefore,
N IPCRID RIS RIS S
Y= pe=1 =
Now
< # 2|8y ' P 2
2<v§1 A #21[ ; x s .A’; A . <A"II ﬂ) |
y—1
*2 v A7) [2 4 (/’ AAI A;“’H(Af_”'s“)l) Z“—{—(‘u'AZI AZH (Af—#'gu) ZH)#“}

ye=1 p#=0
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' ®
(by partial summation, where Y, = 3 2-1- | 83 [ = O(log ) ),
A=y

SEZ @A) 3 A, (udy |47 (A7 o8, |) - log u (%)

1 a=1

KE(?}A Zu'logiu»AZ iA"'” (A7

ve=1 _ﬂ #)i

e Kz (v A%)- lel, -log ‘l.l,'fiz"l 'A" tar WD Eut1) t

p==1 =1

+ K 2 (r 47)- Z log - 45 ,u+1 !A? Ay (D" €uga) i

r=1 n=1
(3.2.2) == 21 + 22 -+ zay say.
Let us start with
S ‘ »' w32 [ +2 r P x'+;~r .
2 z (7} A Zl Iu' . ]'Og 'Ll. ) Au zﬂ 7 ) Aﬂ (Av'—-y) .A 8,u+r
p=1 = [

#'+a—r
[ 4 8[l+r l ?

®' 2 [ e »
(3:23) < 2( )E O Y A R

re==0 =1

where we consider, for the range of values of 7, three cases as follows.

Case 1: 7 = 0. In this case >, reduces to

(v A%~ Z log u- 45 g7

M=

|

2 A%+ ¢, | = O(log n)

as w - oo, if

ZIOgM'Az"“-A;‘_”- IAz'+z e, ! — 0(4%),

H=1
that is, if
EA’ L. Zloa) <A “] A7 2| = 0(4%) (by partial summation),
=1
which holds since
3
(3.2.4) 2 log A-AFH | A2 4, | = 0(1),
A=1

as p —> oo, by virtue of the condition (2.1.3) of the hypothesis.

(®) Throughout logu at g =1 should be understood to be a positive constant,
and not the routine zero. ' '
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Case 2 r=1, 2, .., » -~ 1. In this case a typical term in 3, is
# 42| 2 4 o1 mer | aiae ,
()3 0 anm vz | 4
< 41 t2-r < A7
o . K % - r—
<K-Y logu- A2+ |4 Eppr | O T
p=1 vz <ty
n
- 3 #' a1 — 1y
L E-Flog p A7 [ A7 g, (e A7
#=1
(by Lemma 1, sinee 0<<r<x 4 1),
— 41— +2—r
= K- 21100 pr AE AR e
Prand
(3.2.5) == O(log n) ,
as » — oo, by Lemma 3, in virtue of the conditions (2.1.1), (2.1.2), (2.1.3) and
) } b > b
‘Lemma 2.
Case 3: r =x +2, % + 3, ..., » + 2. In this case a typical term in 3, is-
w42\ 2 ~ ' 2—
I3 oar 3w agn a5 ][4 e,
=
< #' 41 ' 2—7 < A;——(;;—_”)
-3 dog ped i [ 470 e | 3 S
= P v
n
P! w27 —tp—-2)
< K-leog w A% lA" Eppr 41 z { A7 [
u=
n T—pc—1
=K -y logu AL * |4 g, |- 3 4707
n=1 . =0
(since 4, =0 for n>a =1, 2, ...)
n ? !
< K-Z;log,u.-A; AT e |
P
(3.2.6) = O(log n),

as n — oo, by Lemma 4, in virtue of the condition (2.1.2) of the hypotheses.

Next, we consider ,, where
n

2= E (v A7) z/“ log pu- 4}, - I A7 (A pen " Eurr) E

pe=1 u=1
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< K- Zﬂl(w A%~ 211100 (u +1)- A”H IA"” (A, —utn Eppd) I
Ve u=
(since Ay iy =0  when y =79
= K- zn( AX- 2102# A" {A’H( r—p € ]
y=1 p=1
(3.2.7) <K-x’§+1 (”’ j’ 1) § (v A%
ra=0

3 tog e | 45T || 4
n=1
o 1 .
So again,

8,u+r
We observe that (3.2.7) is the same as (3.2.3) with »' replaced by »
e have the following three cases as above

1.
and, finally, have only to show that

Case 1: r = 0. We proceed exactly in the same manner as in Case 1 of >
(3.2.8)

Slog 2-45 [ 4% g, | = 0(1),
A=1
(2.1.3) and Lemma

Cagse 2: v =1, 2

2
y oo
that

as u — oo, which is true by Lemma 3, in virtue of the conditions (2.1.1), (2.1.2)
term in (3.2.7) and working out as in Case

y # + 1. For these values of r, starting with a typical
el 2
(3.2.9)

of zu finally we have only to show

g::llog pr Ay A L | = O(log m)

Case 3

as n — co, which is, @ fortiori, true since (3.2.5) is true
po=x + 2

2, » -+ 3, ..., % 4+ 1. In this case also, proceedin
Case 3 of 3,, finally we have only to show that
(3.2.10)

g as in
¢ pt—1 -_'+1...
> log p- A7 ™*7 | 4 e | = 00
H=1

g 1),

as n — oo, whieh is also, @ fortiori, true since (3
T y

.2.6) is true
Finally, a similar order-estimate for 3, holds as for 3,, for
Sa= (v A} Elowu A%
=1

H=1

1 4% e (Av ~(u+t1) 1t+1) i
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n p—1

< K- z v A7) z log (1 + A;-H i A7 ('Av—‘(u+1) lC:/.t+1) I

ye=l p=1

= K- z(w A%~ 2700 o A" [A’“(‘lfw”'e”) } =I%,.
p=1 H=1

This completes the proof of Theorem 2.

The author acknowledges his gratitude to Dr. T. Parr, University of Jabal-
pur, for his kind interest and advice in the preparation of this paper.
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