JITENDRA LAL and G. P. DIKSHIT (*)

The Phragmén-Lindelöf Principle for Functions of Several Complex Variables. (**)

1. - Let & denote the space of complex numbers, and let

$$\mathscr{C}^n = \{ z = (z_1, ..., z_n) \colon z_j \in \mathscr{C} \}$$
 $(j = 1, ..., n; n \ge 2)$

be the space of ordered *n*-tuples of complex numbers. The usual (product) topology on \mathscr{C}^n has a base consisting of all open polydiscs of the form

$$P = \left\{ z \in \mathscr{C}^n \colon \ \left| \ z_j - a_j \right| < r_j, \ (j = 1, \ ..., \ n) \right\}.$$

For any set $A \in \mathcal{C}^n$, let A^i , A^c and A^b denote respectively the interior, closure and boundary of A, and let $A_i = p_i[A]$ (j = 1, ..., n) be the images of A under continuous projections into each coordinate space \mathcal{C} . Then, in general, $A \in A_1 \times \ldots \times A_n$ and in case $A = A_1 \times \ldots \times A_n$ (a set of the product form), we have $A^i = A_1^i \times \ldots \times A_n^i$ and $A^c = A_1^c \times \ldots \times A_n^c$, and we define the edge of A by $A^c = A_1^b \times \ldots \times A_n^b$, which is, in fact a subset of A^b .

Let $f(z) = f(z_1, ..., z_n)$ be a function of the *n* complex variables z_i , defined on an open set $\mathcal{U} \subset \mathcal{U}^n$. Then [1, p. 2, Cor. 3] f(z) is analytic in \mathcal{U} , if and

^(*) Indirizzo: Department of Mathematics and Astronomy, Lucknow University, Lucknow, India.

^(**) This research has been supported by the Junior Fellowship award of the Council of Scientific and Industrial Research, New Delhi (India). — Ricevuto: 13-I-1965.

only if, for every point $z^0 = (z_1^0, ..., z_n^0) \in \mathcal{U}$, the functions

$$(1.1) F(z_i) = f(z_1^0, ..., z_{i-1}^0, z_i, z_{i+1}^0, ..., z_n^0) (j = 1, ..., n)$$

of one complex variable z_i are analytic respectively in the plane open sets

$$(1.2) \mathcal{U}_{j} = \left\{ z_{j} \in \mathcal{C} : (z_{1}^{0}, ..., z_{j-1}^{0}, z_{j}, z_{j+1}^{0}, ..., z_{n}^{0}) \in \mathcal{U} \right\} (j = 1, ..., n).$$

The object of this paper to formulate and prove the Phragmén-Lindelör extension of the maximum-modulus principle for functions of several complex variables, analytic in an *open subset* of \mathscr{C}^n .

2. - We shall first give a proof of the maximum-modulus principle, which may be stated as

Let $f(z) = f(z_1, ..., z_n)$ be analytic in the closure of a bounded open set $\mathscr{U} \subset \mathscr{U}^n$ and $|f(z)| \leq M$ on \mathscr{U}^b . Then $|f(z)| \leq M$ in \mathscr{U} . Moreover, |f(z)| = M at a point in \mathscr{U} only if f(z) is constant in the component (maximal connected subset) of \mathscr{U} containing that point.

Proof. Let $z^0 = (z_1^0, ..., z_n^0)$ be an arbitrary fixed point in \mathcal{U} and \mathcal{U}_j be defined as in (1.2). Then it is easy to see that

$$\prod_{k=1}^{j-1} \left\{ \left. z_k^0 \right. \right\} \times \, \, \mathscr{U}_{j}^c \times \prod_{k=j+1}^{n} \left\{ \left. z_k^0 \right. \right\} \subset \mathscr{U}^c$$

and

$$\prod_{k=1}^{j-1} \left\{ z_k^0 \right\} \times \, \mathscr{U}_j^b \, \times \prod_{k=j+1}^n \left\{ z_k^0 \right\} \subset \mathscr{U}^b \qquad \qquad (j = 1, \, ..., \, n).$$

Let $F(z_i)$ be defined as in (1.1). Then, $F(z_i)$ being analytic respectively in \mathscr{U}_i^c and

$$|F(z_j)| \leqslant M$$
 on \mathscr{U}_j^b $(j = 1, ..., n)$

we have, by the maximum-modulus principle for functions of one complex variable,

$$\mid F(z_{j})\mid \leqslant M \quad \text{in} \quad \mathscr{U}_{j} \qquad \qquad (j=1,\;...,\;n).$$

Since $z_j^0 \in \mathcal{U}_j$, therefore, $|f(z^0)| \leq M$. Hence, z^0 being any point in \mathcal{U} , it follows that $|f(z)| \leq M$ in \mathcal{U} .

Now, let z^0 be a point in $\mathscr U$ such that $|f(z^0)|=M$ and C be the component of $\mathscr U$ containing z^0 , and define

$$C_{j} = \left\{ z_{j} \in \mathscr{C} : (z_{1}^{0}, ..., z_{j-1}^{0}, z_{j}, z_{j+1}^{0}, ..., z_{n}^{0}) \in C \right\} \quad (j = 1, ..., n),$$

which are, in fact, the components of \mathcal{U}_j containing z_0^j . Then, since $|F(z_j^0)| = M$, we have

$$F(z_i) = F(z_i^0) = f(z^0)$$
 in C_i $(j = 1, ..., n)$

and therefore, by [1, p. 2, Cor. 3],

$$f(z) = f(z^0)$$
 in $C_1 \times ... \times C_n$.

Hence, as $C \subset C_1 \times ... \times C_n$, it follows that f(z) is constant in C.

Remark. In case \mathscr{U} is an open set of the product form, we can replace the boundary \mathscr{U}^b by the edge $\mathscr{U}^c \subset \mathscr{U}^b$. Also if \mathscr{U} is a domain (connected open set), then $C = \mathscr{U}$.

Theorem 1. Let $f(z) = f(z_1, ..., z_n)$ be analytic in the closure of a bounded open set $\mathscr{U} \subset \mathscr{C}^n$ except at a finite number of points

$$a^{(k)} = (a_1^{(k)}, \ldots, a_n^{(k)}) \in \mathcal{U}^b$$
 $(k = 1, \ldots, m)$

and

(2.1)
$$|f(z)| \leq M$$
 on $\mathscr{U}^b \sim A$, $A = \{a^{(k)}: k = 1, ..., m\}$.

Further, let there be another function $w(z) = w(z_1, ..., z_n)$ analytic in $\mathscr{U} \sim A$ and satisfying the conditions:

- (i) $w(z) \neq 0 \text{ in } \mathcal{U},$
- (ii) $|w(z)| \leq 1$ on $\mathcal{U}^b \sim A$ and
- (iii) given $\varepsilon > 0$, we can find a system of m domains, each containing a point $a^{(c)}$ and having an arbitrarily small diameter such that, on part in $\mathscr U$ of the boundary of their union

$$|f(z)\cdot \{v(z)\}^{\varepsilon}| \leqslant M.$$

Then

$$|f(z)| \leqslant M$$
 in \mathscr{U} .

Proof. Given $\varepsilon > 0$, consider the function $f_{\varepsilon}(z) = f(z) \{w(z)\}^{\varepsilon}$ which is analytic in $\mathscr{U}^{\varepsilon} \sim A$. Let $z^{0} = (z_{1}^{0}, ..., z_{n}^{0})$ be an arbitrary fixed point in \mathscr{U} . Then, by (iii), we can find domains $D_{\varepsilon,k}$ (k=1, ..., m) such that

$$a^{(k)} \in D_{\epsilon,k}$$
, $z^0 \notin D_{\epsilon,k}$ $(k = 1, ..., m)$

and

$$|f_{\varepsilon}(z)| \leqslant M \quad \text{on} \quad \mathscr{U} \cap D^{b}_{\varepsilon}, \qquad \quad D_{\varepsilon} = \bigcup_{k=1}^{m} D_{\varepsilon,k} \, .$$

Since $A \subset D_{\varepsilon}$, therefore, $f_{\varepsilon}(z)$ is analytic in $\mathscr{U}^{\varepsilon} \sim D_{\varepsilon}$ and also, by (ii) and (2.1), we have

$$|f_{\varepsilon}(z)| \leqslant M \quad \text{on} \quad \mathscr{U}^{b} \sim D_{\varepsilon}.$$

Now, let $\mathscr{U}_{\varepsilon} = \mathscr{U} \sim D_{\varepsilon}^{c}$, which again is a bounded open set in \mathscr{C}^{n} . Then it is easy to see that

$$\mathscr{U}^{\mathfrak{c}}_{\mathfrak{s}} = \mathscr{U}^{\mathfrak{c}} \sim D_{\mathfrak{s}} \quad \text{and} \quad \mathscr{U}^{\mathfrak{b}}_{\mathfrak{s}} = (\mathscr{U} \cap D^{\mathfrak{b}}_{\mathfrak{s}}) \cup (\mathscr{U}^{\mathfrak{b}} \sim D_{\mathfrak{s}}).$$

Thus, $f_{\epsilon}(z)$ being analytic in $\mathscr{U}_{\epsilon}^{c}$ and, by (2.2) and (2.3),

$$|f_{\varepsilon}(z)| \leqslant M$$
 on $\mathscr{U}^{b}_{\varepsilon}$

we have, by the maximum modulus principle,

$$|f_{\varepsilon}(z)| \leqslant M$$
 in $\mathscr{U}_{\varepsilon}$.

Since $z^0 \in \mathcal{U}_s$, therefore

$$|f(z^0)\cdot \{w(z^0)\}^{\varepsilon}| \leqslant M,$$

or, by (i),
$$|f(z^0)| \le M |w(z^0)|^{-\epsilon}.$$

This being true for all $\varepsilon > 0$ and $f(z^0)$ being independent of ε , we have, on making $\varepsilon \to 0$, $|f(z^0)| \leq M$. Hence, z^0 being any point in \mathscr{U} , the result follows.

It is a privilege to thank Dr. S. K. Bose for proposing this problem and giving helpful suggestions in the preparation of this paper.

Reference.

[1] M. Hervé, Several Complex Variables, Oxford University Press, 1963.

* * *