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On Some Dynamical Problems
Arising in the Theory of Lubrication.

Part IV (¥%)

20. - Introduction.

The investigation is continued here, using, for ease of reference, progressive
numbering of sections and consistent notation (lists of symbols are in Sect. 11
of Part IT and Sect. 16 of Part ITI).

The matter under study is again the whirls of large amplitude of a rigid
journal rotating in a bearing lubricated with an incompressible viseous fluid:
here the case is considered of a heavy journal in a short bearing, with cavit-
ating lubricant film. It is the case where, under steady conditions, the radial
and transverse components of the force due to the lubricant are expressed
in terms of eccentrieity ratio A through formulae due to Ocvirk:

R oy Az aRPwy A

(20.1) ¥, = T (—Ane? VRS 4c? (1= Az3fk "

The steady configuration of the journal centre is therefore specified by the
formulae

o T B @n A{1— A2 4 (16/a)42 piie
T4 e (1 — 42z !
(20.2)
tan f = Z (1— A2 %A,

(*) Indirizzo: Centro Studi Calcolatrici Elettroniche del C.N.R. presso I’Universita
di Pisa, Pisa, Italia. — Ricevuto il 15-IV-1964.
(**) Part I is in Riv. Mat. Univ. Parma (2) 1 (1960), 1-20; Part II, ibid. (2) 4 (1963),
1-21; Part III, ibid. (2) 5 (1964), 49-60.
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Here the notation is standard: for instance W is the load acting on the jour-
nal and f is the angle between the direction of the load (the downward ver-
tical) and the vector 20, i. e. the oriented segment joining the bearing centre £
with the steady position O of the journal centre.

Under dynamic conditions the formulae which express #,, F, must be
much more complex, because the region of cavitation may rock in depen-
dence with the kinematic state of the journal. Explicit formulae have
been given nevertheless in an earlier paper (); we write them down here again,
because they play a decisive rdle in our developments:

nl’b

P, o= 20ep—2¢g.}
(20.3)
7) R b
F, = {(w__)ﬁ)BJ3_"egl}J
where
2 acos? oy
G =
(I — a® cos® oy)*®
__asinog[3 4+ (2 — 5a?) cos? o]
b2 = (1 — a?)? (1 — a? cos? oy)? h
1 +2e fa a siney
(20:‘:) 4 -+ m {5 -+ arctan m}

a sin o (1 — 2 cos?® oy a2 cos? a;)

s (1 — a®)(1 — a? cos? o;)?

: — )2 1T g _itf_iﬂ
+ (1 —a?) {2 L arctan T | *

and o, has the following significance; the region occupied by the oil film (i. e.,
the region where the solution of REYNOLDS equation for the pressure is non
negative) is (e, oy + ), if the angles are counted as usual in the sense of
rotation from the radius pointing to where is the maximum of film thickness.

(1) G. Capriz, Sulle vibraziont di aste rotanti. Ann. Se. Norm. Sup. Pisa (3) 17 (1963),
31-42.
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In other words «, is determined by the conditions

e-(w— 2h) . 2¢
ﬂ == aresin

9 == arccos v 3 , :
(_40.5) &y arccos [([D . 26)2 o2 + 4. 62]1/2 [(w - 2’3)2 e + 4 32]1/2

The interest of formulae (20.3) lies in that they allow a discussion of the sta-
bility of the steady configuration specified by eqns (20.2) of the journal under
load, more complete than that carried out by Hormes (2). HormEs’ analysis is
based on the linearization of the expressions for F,, F, in the vicinity of their
steady-state values and on the successive discussion of the properties of the
solutions of the dynamic equations with the use of the rules of Rouvra-HUR-
WITZ.

Because the phenomenon of journal whirl depends, within the limits of Hox-
MES’ scheme, on two non-dimensional parameters only [for instance 4 and the
non-dimensional load ratio w = W/(m ¢ w?)], it is possibile to determine, in
the plane of those variables, the region of linear stability S and thus express
the main result of the investigation very simply by means of a graph.

We have carried out a number of numerical integrations of the complete
non-linear equations and found that generally stability is assured also in the
large if A, w are chosen as coordinates of a point within §, and vice versa.
The extension thus achieved of the validity of HorMES' result is by no means
trivial: notice, for instance, that under some circumstances during a whirl of
large amplitude, considerable rocking of the film occurs.

21. - Dynamic equations. Linear stability.

With the usual notation the equations of motion of the journal centre in
polar coordinates of origin Q are:

mea=mcap® +F, - W cosp
@1.1)

meaf=—2mecap +F,— Wsinp.

These equations can be put ir a fully non-dimensional form introducing a
variable v = w ¢:

a =af?*+ M[(1—28)aqg,—2a | -+ w cos
(21.2) { B+ [« B')ag 9] B

af =—2a f +M[1—2p)ag,—2a g] —wsing.

(%) In his paper: R. Hormes, The vibration of a rigid shaft on short sleeve bearings,
J. Mech. Eng. Science 2 (1960), 337-341.
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Here a prime denotes a derivative towards 7, w is the parameter W/(m ¢ w?)
already quoted and 3 stands for the ratio 5 R b*/(2 m ¢® w):

w=W/mew?, IMH=nRb/(EZndwv).

M is strictly related to the parameter B, used in Sect. 12 [see the third formula
(12.15): B, =z M/\/2].
As already remarked in Sect. 20, eqns (21.2) admit of a constant solution:

(21.3) a=4, p=0F,

where 4 and f arve related to w and M through eqns (20.2).

In a neighbourhood of the solution (21.8), a(1), plr) satisfy approximately
a linear system which is obtained from (21.2) by substituting for a(r) and ()
the expressions

a(r) = A +a(r), Bz) =B + fir)

and disregarding squares and products of a,, f:

"

ay =— Ma(l +2 A1 — A2 a —4 AT + 431 — A2)%q, +

+ 4 M A1 — A%)=2 f;—w B, sin B,

Br=— Mm@ — A= B — (w/A)p,cos f -4 M (1

P 7
A2 a; +

(M af24)(1 + 2 A2)(1 — A2, .

Application of RoutH’s rule to this linear system yields the following condit-
ion for stability: w > G(4), where

G(4) = [1642 + 71— 4] [2%(1 + 242) —
—16AT] {2431 4 A2)(2 + A1 — 4371 (3 + A% +
@62 + A+ 2423 + A9 —
— A3 4 A1 + 2422 + A1 — A2},

if we express M and B, wherever they appear, in terms of w, A using the second
eqn (20.2) and a consequence of the first eqn (20.2):

M o= 2(1 — A®PA1[16 42 + 72 (1— A%)] P w.
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As we mentioned in the Introduction, it is possible to illustrate the cond-
ition of stability, by tracing the curve

(2.14) | w = G(A)

in the plane (4, w) [see Fig. 1 here and Fig. 3 of the paper quoted in footnote (3)].
Note that ¢(0)= /24 and G(4) — 0 for 4 — A, where 4 is less than 1, approx-
imately A4 = 0.7556; note also that @(4) = s/24 -+ 0(4%): the boundary of
the region of stability is very well approximated by the straight line 4 := 7/24
in the neighbourhood of 4 = 0. Naturally there is a similariby between the curve
of equation (2.14) in the plane (4, w) and the curve » == »(A) appearing in the
paper mentioned in footnote ().

22. - Numerical integration of non-linear equations.

General qualitative properties of the solutions of large amplitude of system
(21.2) are difficult to discover by analytical means, due to the complexity of
the functions g,, where, furthermore, the parameter «, must be specified using
formulae (20.5). Recourse can be made to a direct numerical integration: we
have used a predictor-corrector method (see Sect. 19) and carried out quite a
few numerical experiments, with the usual precautions (see Table 1).

The values of 4 and w chosen for the experiments are the coordinates of
points within the circles shown in Fig. 1. Four typical trajectories are shown
in Figs. 2-5; two graphs of o, versus 7 are traced in Fig. 6.

Table 1 gives case number, the values of A and w characterizing the case,
the corresponding value of f, the initial values of ¢ and § (¢ and g’ were all tak-
en to be zero initially), the final value of v (to mark the length of the exper-
iment) and finally two indices « or s, 0 or 1 which describe the observed behav-
iour for large 7. w is for unstable, to mean that ¢ tends towards 1, 8’ towards
1/2; s is for stable, to mean that « tends towards 4, g towards . The indices 0
and 1 give & clue as to the behaviour of «;: the first index is appended to cases
where o; tends to zero, the second where ¢; shows large oscillations (between
— /2 and z/2). Where an index is missing no decisions could be made within
the limits of the experiment. By cross-reference to Fig. 1, where unstable cases
are marked with a cross and stable cases with a dot within the circle, the per-
manence in the large can be noticed of the rule of stability found by Hormms
within the limits of a perturbation anlysis. This permanence, within rather
close bounds, is surprising, in view of the circumstance that in all unstable cas-
es when w ~z/24, rocking of the lubricant film occurs and when 4 ~ 0.7 the
cavity appeared to rotate together with the vector £0. Obviously under linearly
unstable conditions a progressive increase of the amplitude of vibration is not
arrested by the rocking of the film.
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