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Convergence

of the Generalized Whittak er Transform. (*%)

0. - Introduction.

Several generalizations of the LAPLACE integral
(0.1) f(s) = J’e—st a(t) di
[
or the LAPLACE-STIELTJES integral

(0.2) f(s) = j e—st dee(t)

have been given by MEITER [2], Boas [1] and VARMA [4], [5]. One of the gen-
eralisations given by the last author is in the form

(0.3) f(s) =s f (2st) 7Y W, m(21) a(t) df .
) b
We have taken our transform in the form

(0.4) f(s) = f(‘zSt)’- Wi m(282) aft) dt,

(*) Indirizzo: Balwant Rajput College, Agra, India.
(**) Ricevuto: 22-1X-1964.
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where W, ,(z) denotes WHITTAKER function. We shall call f(s) as the Genera-
lised WHITTAKER Transform of «(?). When 1=—1/4, k=1/4 and m=-+1/4,
this reduces to (0.1) due to identity

(2st) Wy L ypa(281) = 07

In this paper I have given the formulae for the abscissa of convergence
and uniform convergence for the transform (0.4).

1. — In the following theorem we shall establish the relation between the
order properties of the determining function and the convergence properties
of the corresponding Generalised WHITTAXER Transform.

We shall need the following result:

Lemma. If a(t) be a normalized function of bounded variation and the
integrals involved exist, then

YW, m(28t) de(t) =

eg_ﬁs

(1.1) 4 =s f 251)* Wi n(21) a(t) At — 2s(k + ),)7(231))"‘1 Wi m(280) aft) dt -+

L + 2s{m*— (k— (1/2))2} Of (288" W_y n(252) alt) at
Proof. We have

a{a* Wy (@) } = { A Wi ule) + 0 W, ()} =
= @A Win(@) + (B— (1/2)2) Wi (@) —{ m2— (k— (1 2)2 YW,y @) =

{ by using a known recurrence formula [6] }

= o* (b + A— (1/2)0) W () —{ m2 — (b— (1/2)) } W,_, ()] .

Therefore

f(2st)’1 W oem(288) doc(t) = (258)* W (258) a(8) |5 —

— 28 f(zst)’~~1[(ic + A — st Wi m(288) —{ m®— (b — (1/2) )2 FWoa,m(280)]ot) dt .
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But, since of{f) is a normalized function of bounded variation, the integrated
portion evidently vanishes at ¢ ==0. Also for large values of #, W;yn.(f) ~
~ e~ g% hence it vanishes also as ¢ — co.

Thus result (1.1) is established.

Theorem 1. If

a(t) = O(e" tr) (t = o0)
for some real numbers v and n, then the integral
(1.2) f (2st)* W, m(25t) der(?)
¢
converges for o>y, where o is the real part of s, a(t) being a normalized function
of bounded variation, provided Re(/l +n-tm -+ (17/2)) >0
Proof. The hypothesis implies the existence of a constant 3/ such that
| ce(t) | < DL ¥t g (0 <t < o0),

since we have assumed o(t) to be a function of bounded variation. Hence

-] =-1

s f (2st)* Wi m(25t) a(t) i

0

(2st)"+n gblenie 7, 90 d(2st) .

<

Now using SLATER's [3] result

-

(1.3) f e T W (1) At =

0

I(i+m+(1/2) FA—m4(1/2))
T'(A—T + 1)

(2 £m +(1/2); A—Fk + 15 (1/2)—s) (),

Re(s +(1/2))>0 and Re(A4m + (1/2))>0

() Here ,Fy(4 £ m + (1/2); 2—k+1; (1/2)—s) stands for ,Fy(2 + m + (1/2),
—m+ (1/2); A—Fk +1;5 (1/2) —s).
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we have
§ f ‘)St) TVI m ) '(t) dt <
[}
(1.4) { M T(h+n+m+ BR2)(A+n—m+ (32))
2|2 | A +n—5%-+2)
Fl(lj‘—'n-imw( Y A +n—k 25 (1/2) 4—{;// })

-

provided Re (2 +n - m + (3/2)) >0 and Re (—{yes}+@a2))=>o0.
Similarly

'5 f( ’St)} * TVL m ) Ot(é) dt <
0

(1.5) < M I(d+n+m 4+ 12)I(4 +n—m+(1/2))
l 25 | ' +n—Fk-1)
g (2~7zin@~(1/9 tm—k +1; (1/2) +{p/(2s) })

provided ‘Rse (l +n 4+ m -+ (1/2)) >0 and Re (~——{y/(2$)} b (1/2)) >0, and

r

f sUP T Wi, (280) ar(t) At <
[}

(1.6) < M r(A+adm+1/2) 02 +n—m+(1/2) .
| 25| IA4+n—%k+2)

I A nm (125 A+ n—T +2; (1/2) +{7/(25) ),

.

provided Re (A +m =m + (1/2))>0 and Re (—{y/(2s)} + (1/2))>0.

The series on the right hand side of the inequalities (1.4), (1.5) and (1.6)
are convergent if Re ({y/(2s)} + (1/2)) <1, i.e., if y <Res = ¢ and thus the
integrals to the left hand side of these inequalities converge absolutely for
o>y, provided Re (A +n 4 m -+ (1/2)) > 0.

Therefore by the Lemma, the integral (1.2) converges for ¢ >y provided
Re(2 +n4m 4+ (1/2))>0

Hence our theorem is established.

Corollary. If a{co) exists and if
o(t) — o{00) = O(e”* 1) (t = oo)

for real numbers y and n, then the integral (1.2) converges for o> y.



[5] CONVERGENCE OF THE GENERALIZED WHITTAKER TRANSFORM 87

This follows immediately, for

[=~]

[ @sty* Wi (251) d{ lt) — ax(00) } = j (2s8)" W o(25t) dec().

0

2. — We now proceed from convergence properties of the integral to the
order properties of «(f).

Theorem 2(a). ff

(2.1) f(‘zst)’- W (251) do(t)

0

converges for s =s, =y +id with y> 0, then

a(t) == o(¢” t74F) (t = oo).
Proof. We have

oft) — «(0) = /do () == f(qu ap(w)
0

TVk m(2850) °

where
+ N
B(t) = [ (2su)* Wy (2s4%) dor(t0) (0 <t < o).

Integration by parts gives

1

o(t) — a(0) = B(t) —Tm) [ {(~.8020 ) Wem(2sow) ¥4 f(u) du,

since f(0) = 0. By hypothesis f(co) exists and therefore

Hm { [o(2) — o(0)](286t)" Wy (2868) } =

t—> 0o
1

= (o) — lim ((280t)}' Wi m(280t) / dd {(usou) W m(2802) }_1 Blu) du) s

t

== lim <(2sot)” Wk,m(2sot)/ {.490@4 W m(2801) ¥ [B(00) — P(u)] du) =

t—
0

t

[ {050 Wi 250} [ o0) — 0] Qs

0

= lim

t— o

{@sgt)* Wi m(@s4t)} 1 !

which is easily seen to be zero if the real part of s, is positive.
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Also Wy (@) ~e ™ g¢ (2 — oo) . Therefore

im { [Ot(t) — o((())] (280t)2+k e_gut} —0.

> 0

Hence «(t)— «(0) = o(e?t™*7*) (I - o), or aft) = o(e”"t™*™")  (f —o0).

Thus the theorem is proved.

If we put A =—1/4, k = 1/4, we get a(t) = o(¢’?), which is a known result
in the theory of ordinary LapLACE transform.

Theorem 2(b). If the integral (2.1} converges for s =8y =y - id with
y <0 and if a(co) ewists, then

a(t) — (o) = ofe?t t~*7F) (t = oo).

Proof. We have
o(00) — ax(t) = fwdoc(u) = f{ (280u)* Wi m(250u) } dB(u) ,

where

p) = ft(zso’“)'1 Wi m(2802%) doc().

Integration by parts gives

o

a(00) — ax(t) = —{ (280t)* Wi m(280t) } 7 B( t)—-/ i{ (280u)" Wi m(285w) }* Blu) du .

t
By hypothesis §(co) exists, therefore

lim { [o(00) — o(t)](2501)* Wi m(286t) } =

i o

= — B(co0) — lim {(2sot)l Wi m(28,1) f [(2su)? Wi m(280%)] 7" B(w) du} .

i—> o

oo

= lim {(Z.S'C,t)Z Wi m(258) j — [(2su)* Wi m(2800)] ™" [B(c0) — B(w)] du} .

t—> o0
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The last limit can be proved equal to zero as in Theorem 2(a). Therefore .

1im { [or(o0) — ax(t)]e ™" (2s4t) % } =0,

i—> o

whence

a(t) — a(oo0) == o(e”t t747F) {t = oo).

Thus the theorem is proved.

The corresponding result in the theory of Ordinary Laprace Transform
is again obtained by taking A =—1/4 and k& =1/4.

3. — We shall now establish the formula for the abscissa of convergence.
‘We shall take # == (1 + k) throughout this section.

Theorem 3(a). If

lm { (1/2) log | at)fin | } =15 0,

t— o

then 1 is the abscissa of convergence o, for the integral

0

(3.1) _ [ @sty" Wi m(2s1) dec(t).

o

Proof. Case I: 1>0.

We shall first prove that (3.1) converges for ¢ > 1.

Let & be any arbitrary positive constant, then by hypothesis

(Z(t)/t" — O(e(H-e)t)

or
(3.2) a(t) = 0+t ).
Hence by Theorem 1, the integral (3.1) converges for ¢ >1 - ¢, that is it con-
verges for o> 1.

Let us now prove that (3 1) diverges for o <Cl.

Suppose it converges for s ==y, where 0 <<y <1, then by Theorem 2(a),
we should have

a(t) = o(e”* ") (t — oo).
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This implies the existence of constants M and 7 such that

| celt) | < L e¥* 1" (T <t << o0),
whence
log | a(t) | <logM -yt + nlogt
and so

I = lim { (1/8) log]| ex(t)/t" | <

i— oo

which contradicts our assumption that y <<1.
Thus our theorem is established for positive 1.

Case II: 1 <0. )

If 1 <0, the same argument as used for positive I shows that (3.1) conver-
ges for ¢ >1.

Now by hypothesis

m(t) — tﬂ 6(I+E)t ,
where 7 is negative. Thus the hypothesis implies that o(co) = 0.

Now to prove that (3.1) diverges for ¢ < I, let us suppose that it converges
for o0 =y <l, then by Theorem 2(b), we should have

o(t) — az(c0) = o(e”t ") . {t — co),
whence

U= 1lim{ (1/2) log| ()i | } <y,

which is contradictory to the assumption that y < 1. Hence (3.1) must diverge
for o <<l.
Thus the theorem is fully proved.

Corollary. If the integral (3.1) has a non-negative abscissa of conver-
gence o,, then it is easy to see from the above theorem that

0, =Hm{ (1/) log| ee(t)/i" | }.
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Theorem 3(b). If
lim { (1/¢) log] a(t)/t" | } =0

t—r oo
and if 7" a(t) approaches mo limit as t becomes infinite, then o, = 0.

Proof. If & be an arbitrary positive constant, then
aft) = 0@ 1) (t = o0)

and since ¢-" «(f) approaches no limit, ¢ cannot vanish. Hence the integral (3.1)
must converge for ¢ >0 and diverge for s =0.

Thorem 3(c). If a(oco) ewists and if

(3.3) lim { (1/2) log| (e(t) — a(c0))ftn | } = 1, <0,

{—> o

then o, =1, .
Proof. If we take I =0 in (3.2), then we get
a(t) = O t") e co),
where ¢ is any positive constant, and so

oft) — a(o0) = O(e* ) (t = o0).

Thus it is clear that for I =0 (3.3) holds whenever a(co) exists.

Now the corollary of Theorem 1 shows that (3.1) converges for ¢>1 . On
the other hand if (3.1) converged for o ==y <l;, then y would be negative and
by Theorem 2(b) we must have

o(co) — a(t) = o(e¥* ") (t ~ co),
whence L
l, = lim{ (1/¢) log| (e(c0) — a@))fim | } <y,

> 0
which contradicts our assumption that y <1,. Thus the integral (3.1) diver-
ges for o <l,.
Hence our theorem is proved.
Corollary. If (3.1) has a megative abscissa of comvergence o, and ofco)
exists, then

o, = lim { (1/) log| {a(c0) — o))/}

Fr o0

The proof follows from the above theorem.
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4. - Uniform convergence near the axis of convergence.

It is a common property of LAPLACE integrals that they converge uniformly
in an angular sector near the abscissa of convergence. Wa shall show here that
the integral

(4.1) fs) = [(2s0)* W, (2s) datt

also has a similar property.
Since Wi n(2st) ~ e~ (2st)* as ¢ — oo, the following Lemma is evident.

Lemma. If 1t is large and s and s, are non-zero, then

d (2st) Wi, m(2st)

— T Atk . -(a—cu)t.
“2) T o) Wopian) | <S50 [s =00l

Theorem 4. If the integral (4.1) converges at s =8, = 0, - i1y, and
if H and K are any constants such that H >0, K> 1, then the integral (4.1)
converges uniformly in the region A defined by the inequality

(4.3) | /s lz“k |s—s8 | <K (60— agp) 677,

Proof. We observe that if s lies in A we must have 0 > g, or else s = s, .
Hence, since (4.1) converges at ¢ = s,, it must converge in A.
If ¢ be an arbitrary positive number we have to prove that we can deter-
mine & number R, independent of s in 4 such that, for R> R,,
(4.4) ‘ [ (@st)* Wi(25) duft) | <e.
R

Let us take
3

B(t) = f (Zsou)* Wi m(280%) dor(u) (0 <t < o0)
0
and determine R, greater than H and such that

LB —B(t) | <e/K

for all values fo ¢ and ¢’ greater than R,. This is possible by the convergence
of (4.1) at s, . Thus

[ @s) W (2t

(@) W m(2501) afpey—pRr)] .
R

/ (281)" W (252) dor(2)
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Hence if B> R,, we finally get with the help of Lemma (4.2) that
8 —
[2)

] fo(Qst)’1 W, m(28t) dec(t) . < (/)| s/s, |*T* I—:——f;o—l pT@m o

Hence if s is any point of 4 other than s,, then

f(2st)" W, m(28t) dor(t) J L eemOTONETE o g
R

and in case s =,

f(2st)? W, (2st) datt

R

= | f(oo) — B(R) | < ¢/E < &.

Thus the theorem is proved.

I am greatly indebted to Dr. K. M. SAxsENA for his kind help and guidance
in the preparation of this paper.
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