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On Functions of Bounded wo-Variation. (%)

Let w(a) be a function of bounded variation. It is wellknown that the set
of the points of discontinuities of w(z) is almost enumerable although this set
may be everywhere dense [1]. Since w(z) can be expressed as the difference of
two non-decreasing functions there will be no loss of generality in taking w(z)
to be non-decreasing. Let [a, b] be a closed interval and suppose that
w(z) is defined in [a, b] with the understanding that w(®) == w(a) for z <<a
and o(®) = w(d) for # > b. Prof. R. L. JEFFERY [2] now denotes by S the class
of functions F(x) defined as follows: ;

F(») is defined at points of continuity of w(z) on [a, b] and if & denotes
the set over which w(z) is continuous, then F(z) is continuous over & at points
of 8. At any point of discontinuity z, of w(®), it is supposed that F(x) tends
to a limit as & tends to ,+ and to x,— over the points of 8. These limits will
be denoted by F(x,+) and F(w,—). Also for » <«, it is assumed that F(z) =
= Fla+) and for # > b, F(x) = F(b —). F(z) may or may not be defined at
points of discontinuity of w(z).

Prof. JerrErRY has introduced the following definition.

Definition. A function F(x) defined on [a, b] and in class O is abso-
lutely continuous relative to w, AC - w, if for ¢> 0 there exists >0 such
that for any set of non-overlapping intervals (z;, «;) on [a, b] with ¥ { o (z;+) —
—o(@—)}<6 the relation Y |PF(x;+)— Fle—)|<e is satisfied.

In [2] some results have been obtained for functions F(z)in class 9 which
are AC - w. In this paper we have introduced the definition of bounded var-
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iation relative to w{x) of a function (of BV - » function) belonging to 9f;
and obtaining some preliminary results it has been shown that a function F(z)
which is AC - @ on [a, 5] must be BV -w on [a, b].

Throughout the paper we shall consider only those functions F(z)in class
for which F(w,+) and F(z,—), @€ I -—3, are finite, where I = [a, b].

Let w(a) = <Yy <Y <...<<¥Y, = w(d) be any subdivision of [w{a),
w(b)] where ¥, € w(I). For every y, there is an w; €l such that y, = w(w,). If
for an %, there exist more than one #; such that w(z;) = y,, we shall take any
one x,. It is obvious that a <z, <z, <@ <... <<z, <b. We say that the
points @, @y, X, ..., &, form a subdivision of [a, b] relative to w or is a w-sub-
division of [a, b]. Let F(x) be defined in [a, b] and in class ©f and let

v :g] Fa+)— Fle,_,—) | .

Definition. The least upper bound of the aggregate { 14 } of sums V
for all possible w-subdivisions of [a, b] is called the total w-variation of F(x)
on [a, b] and is denoted by V (F; a, b). If V (F¢ a, b) <+oo, then F(x) is
said to be a function of bounded variation relative to w, BV - w, on [a, b].

If w(x) is constant in [e, ] ¢ [a, ], then any function F(z) defined in [«, b]
and in class @f will always be assumed to be BV - w on [«, £].

Theoreml. Let F(x) be defined in [a,b] and belong to Q. If F(x) is of
bounded variation on [a, b), then it is BV- won [a, b].

Proof. Let D: (a<w<iy <@ <<..<<w,<b) be any w-subdivision
of [a, b]. We shall show that

. n ' b
1) 3| Pl +)— Fle,_,—) | <2 V(F),

1.

b
where V(F) stands for the total variation of F(x) in [a, b]. The following four

cases .come up for consideration
@) a <@y Bp<<by (i) @ =, @, <<b,
(ili) a <<y, @, =D, (iv) a =, ®, =Db.

We prove (1) for the case (i). The proof in the other cases will follow similarly.
Choose the points &, &, &, ., &_; and 7y, s, .., 7. of S such that

a<§o<xo<E1<x1<771<52<w2<772<...<§ 1 ]y < My <8y < -
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Then [&, 7], [€) 7]y [Ear 7s)s oo and [&, na], (&8, mal, [&5) #6)s . form two sets
of non-overlapping intervals in [a, b]. Since, by hypothesis, F(z) is of bounded
variation in [e, b], we have

b
2| P — P& ) | <VEF) (=1, 38,5..)

and
b
Z | Flg) — F(&,) | <V(@F)  (1=2, 4, 6,...).
So,
L3 b
2Pl —F(&,_) | <2 V(F).
i=1 a
Letting &, - »,— and 5, =@, + over the points of 5, we get

n

b
le(wi+)“F($i—1”*)l<2 V(F) .

i=1

Since D is any w-subdivision of [, b] it follows that F(z)is BV - w on [a, b].
This proves the Theorem.

The following example shows that the converse of the above Theorem ig
not true. Let w(z) and F(z) be defined in [0, 2] as follows:

G, 0<<e<l
w(z) =
r—1, 1l<e<<?2
and
. 4
zsin—-, O0<a<2
Flx) = ’

0, z=0.
Let D: (0 <2<y <@y <<...<<2,<2)beany w-subdivision of [0,2]. Then

0<<e, <1 and o, > 1.
Now,

V= 3| Faet)— P, =) | = 3 | Fla) — F,,) |

<| Fwo) | +| Flwy) | + 3| Fle)— Fla,_,) | <3 + V()< M,
1

ie=g
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where M is a fixed constant because F(w) is of bounded variation on [1,2].

The above inequality is true for any w-subdivision of [0, 2]. Hence F(x)
is BV - won [0, 2]. However, it is well-known that F(z) is not of bounded
variation on [0, 2].

Theorem 2. If F(z) is BV -w on [a, b], then F(z4) is bounded on
[a, b].

Proof. Let K, =V, (F;a,b) +|Flat)|, K, =V (F;a,b) + |Fb—)|
and K = max (K, K,).
‘We consider the following cases.

(i) (@) is constant in [a, b].

In this case, since w(z) is continuous in [a, b], F(x) is also continuous in
[a, B]. Consequently F(z) is bounded in [a, b].

(i) o) <olz) <o) for ze(a, b).
In this case the points ¢ <2 <b form a w-subdivision of [«, b]. So

| Fla+)—Fla—) | +| F(b+)— Fle—) | < V(F; a, b).

Hence

| Fla+) | < V,(F; ¢ b)+ | Flat)| = K,
and |

| Fle —) | < V (F; a, b) + | F(b—)| =K,.
So, |

| Flw +) | <K in [a, b].
(iii) () does not satisfy (i) cmd (ii).

Let w(z) = w(a) in [a, «] where « > a is the upper bound of the set { @
@€ [a, b], w(@) = w(a) } and the interval [a, «] is closed or open in the right
according as w(x) = w(a) or not. Similarly let w(x) = w(b) in [B, b], where
f < b is the lower bound of the set {'v z € [a, b], w(x) = w(b) } and the in-
terval [, b] is closed or open in the left according as w(f) = w(b) or not.
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Let K' be the maximum of K, | F(a+ )|, | Fla—) |, | FB+)|, | F(B—) |-

Let o> a and B =b. If we(a, «), then F(z) is continuous at and 2, b form
a w-subdivision of [a, b].

So, |F(b+)—Fe—)| <V, (F; a b), ie.

| Flz) | < K, < K< K.

If & € (2, f), then a, z, b form a w-subdivision of [@, b]. ‘Proceeding as in case
(ii), it can be shown that

| Flot) | < K< K.
So,
| Float) | <K' in[a, b].

Similarly, considering the cases « =@, f<<b and a> ¢, f<<b it can be
shown that :| P(a+)| < K', «€[a, b]. This proves the theorem.

Theoréem 3. If F(z) is BV -w on [a, ¢] and [¢, b], where a<<e<b,
then it is BV - w on [a, b].

Proof. We may suppose that w() is not constant in [a, b], because
in that case F(z) is, by definition, BV - w on [a, b]. Let a <& <& <@ <...
< 3,<b be any w-subdivision of [a, b]. I 2, < ¢, then a <@y <@, <@ <...
< x, < ¢ forms a w-subdivision of [a, ¢] and so

(2) VZZlF(mi +)—F(xi-1—)l<Vm(F; a, ¢) .
. =1 .
If ,>¢, then for some positive integer m(<n) @, <€ <%n. ‘We consider
the following cases.

i) o) <o) <o@") for z' cla ¢ and 2" € (e, b] .

(ii) o(z) is constant in (x, B), where ¢ <a<c¢<f <D, the two equalities
at the ends do not hold simultaneously and the nature of the interval («, B)
is determined analogously to the case (iii) of Theorem 2.

Case (i). If @,y =¢, then @y, @4, .y Ty DA Tmzy By ooos Tn form
w-subdivisions of [a, ¢] and [¢, b] respectively.

So,

" m

(3) 14 :Z‘F($i+)“lp(wi—1—)l = > +i

fe=1

KV (F; a, ¢) + V (F; ¢ b).
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If -y <e, the points wy, @, ..., Ty, ¢ and ¢, @y, ..., ¥, form m-subdivis-
ions of [a, c¢] and [e, b] respectively.

So,
(4) 1% ::Z_:IF("DH'—)‘—F(%—l*){
:Z—...—{"!F(wm + T—F(wm—lh)l +z"'

m-1

<3 | Flot)— Fla,_,—) |} +] FleH)— Ple—) |

H{ | Plant) — Fle—) | + 3 ...}

e~ 1
S V,(F; a, ¢) + V(F; ¢, b) + | Fle+)— Fc —) |.

Case (i). Let @py € (e, f). If @, € (&, B), then (4) holds. Let u,, € («, f).
If m = (consequently § = b) then x,, @, ..., #,-;, ¢ form a w-subdivision
of [a, ¢] and so

(5) V= Z | F@t) By ) | =3 oo+ | Pant) — Bl —) |

<{3 ot | Flet) —Fla,_, =) |} +] Flet) — Flaa+) |
<V F5 0, 0) + | Fle +)| + | Flan 4]

If m <<n, then @, ©,, ..., &ueyy ¢ ANA Xy Tppty, ..r, Tn form w-subdivision
of [a, ¢] and [¢, b] respectively.
So,

m—1

) V=3 |Fet)— P =) | =3 ot | Plont)— Flams—) | +3 ..

m+ 1

St | Flet)— Pl —) |} + | Fle4) — Flaon )| + 3 ...

m-+1

< V,(F5 a, ¢) + V (F; ¢, b) +lF(C+)I +‘F(wm+)l

Let %, € (a, B). If @y =1¢ and m>1, then (3) holds. If x,,—, =c¢ and m =1
(consequently « = a), then z,, #;, ..., 2, form a w-subdivision of [¢, b] and

(7) V= 2 l F(wi+)—F(w£—1 _—) [ < ]7(0(1;,; ¢ b) N

1
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If @, < ¢, then considering the cases m =1 and m>1 it can be shown
that

®) v = 3| Plo )= Fla, )|
<V, (F; ¢, b) +| Fle—) | + | Flay—) |
and
(9) VLV (Fs 0, 0) + V,(F; 0 b) + | Fle—) | + | Fl@m-1—) |
according as m =1 and m>1. :
By Theorem 2, F(z--) is bounded on [a, ¢] and [¢, b], so there exists a
constant K such that
| Flat) | < K for z in [a, b].
From (2), (3), ..., (9) it follows that

(10) V =V (F; a, ¢) + V,(F; ¢ b) 4 2K .

Since (10) holds for any w-subdivision of [a, b] it follows that ¥(z) is BV-o
on [a, b]. This proves the Theorem.

Theorem 4. If F(x)is AC - w on [a, b] and if w(x) is consiant in (x, )]
c [a, b], then F(z) is also constant in (x, ).

Proof. Since w(®) is continuous in («, B), F(z) is continuous in («, B).
Choose &> 0 arbitrary. There exists a 6 > 0 such that for any set of non-over-
lapping intervals (z;, #;) in [a, b] with Z{a)(m;-i-)——w(mi ——)}< 8, we have
S| Pl +)— Fa:—) | <e.

Let ¢ =% (« + f) and let o' € («, ¢), «" € (¢, f) . The intervals (#', ¢) and
(¢, #") are non-overlapping and since w(z) is constant in (e, f), we have

{w(e) — @) } +{o@) — o) } =0 <.

So, | F (¢)— F(z') | +| F(a")— F(¢)| < e. Since ¢>0 is arbitrary, this
implies that F(z') = F(¢) = F(«x") and this proves the Theorem.
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Theorem 5. If F(z) is AC- @ on [a, b], then it is BV - w on [a, b].

Proof. Since F(x) is AC - w on [a, b], there exists 6> 0 such that for
any set of non-overlapping intervals (z,, ;) on [a, b] for which 3'{ w(;+) —

— (@ —) }< 6, we have 3| F(z,+)— F(z, —) | <1. '

We consider the followitng cases.

(I)v The saltus of w(x) at every point of [a, b] is less than 30.

In this case [a, b] can be broken up into a finite number of sub-intervals
Lo, &l [ery 6], ey [Ogoys €] (@ =¢y <o, < <. . < ¢, == b) such that
(11) {ol,+)—ole—) } <} 6 (r=1,2, .., N).

Let e <o <o <m<..<w,<e¢, be any o-subdivision of [e,, ¢]],
1<r< N . The set of intervals (#,,, ;) are non-overlapping and hence by (11)
z{w(%z _}’)"-w -1 }< 0.

So,

3 | Flo+) — Plae—) | <1.

=
Since this is true for any w-subdivision of [¢,,, ¢,], we have

VolF'5 61y €) <1

Thus F(z) is BV - o on each of the intervals [¢, ¢;], [, ¢a], ...y [e4_y, €4]
and consequently by Theorem 3, F(x) is BV -w on [a, b].
(II)  There ewist points in [a, b] at which the saltus of w(z) is >%6.

It is well-known [8] that these points are finite in number. Let them be
€1y €z Cay «vey Cn SUCH that ¢ <e, <...<<e,. In [¢, ¢] We choose points o, 3
(e << B) of S such that

(12) w(e) — ot +) <3d  and o, —)—o(f) <16.

At each point in [e, f] the saltus of w(w) is less than } 6 and so by cage (I), F(w)
is BV-w on [o, f].
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Now, leb ey < iy <y < < ... <@, <o be any o-subdivision of [e,_,, «].

If e,_, <@, then by (12)

é{w(a}h —w(a“i -1 )}<(3

and so

7

2]F(m,~,— — Fle,_, —)| <1.

If ¢,_, ==, then we can choose a point £ in (,, @) O 8§ such that | Fw,+) —
— F(§)| <1. Then

S| Floi+)— Fle,_, —) | <| Flay+) — F(&) | + | Flaog+) — Fla,—) |

ge=x

+{ | P@+)—F(& | + 3| Floi4) — Flo.,—) |}
<2 + K, where K =|F(¢,_,+)—F(c,_,—)],

since (&, 2y), (#y, @)y «ovy (@umy, ©,) 15 @ system of non-overlapping intervals in.
[e,_ys o] with

{ ole, +)—o(£) }+z{ — (g, —) }<4.

{2
So, in any case

(13) S| Fla, 4)— Pl —) | <2 + K.

d==]

Since (13) is true for any w-subdivision of [e,_,, «], it follows that F(z)is BV - o
on [e¢,_,, «]. Similarly, it can be shown that F(z) is BV - w on [f, ¢,]. So, by
Theorem 3, F(z) is BV - w on [¢,_,, ¢,] and consequently by the same Theorem,
BV-w on [a, b]. This proves the Theorem.
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