Р. С. Внакта (*)

On Functions of Bounded ω-Variation. (**)

Let $\omega(x)$ be a function of bounded variation. It is wellknown that the set of the points of discontinuities of $\omega(x)$ is almost enumerable although this set may be everywhere dense [1]. Since $\omega(x)$ can be expressed as the difference of two non-decreasing functions there will be no loss of generality in taking $\omega(x)$ to be non-decreasing. Let [a, b] be a closed interval and suppose that $\omega(x)$ is defined in [a, b] with the understanding that $\omega(x) = \omega(a)$ for x < a and $\omega(x) = \omega(b)$ for x > b. Prof. R. L. Jeffery [2] now denotes by \mathfrak{A} the class of functions F(x) defined as follows:

F(x) is defined at points of continuity of $\omega(x)$ on [a, b] and if S denotes the set over which $\omega(x)$ is continuous, then F(x) is continuous over S at points of S. At any point of discontinuity x_0 of $\omega(x)$, it is supposed that F(x) tends to a limit as x tends to $x_0 +$ and to $x_0 -$ over the points of S. These limits will be denoted by $F(x_0 +)$ and $F(x_0 -)$. Also for x < a, it is assumed that F(x) = F(a +) and for x > b, F(x) = F(b -). F(x) may or may not be defined at points of discontinuity of $\omega(x)$.

Prof. Jeffery has introduced the following definition.

Definition. A function F(x) defined on [a, b] and in class $\mathfrak A$ is absolutely continuous relative to ω , AC - ω , if for $\varepsilon > 0$ there exists $\delta > 0$ such that for any set of non-overlapping intervals (x_i, x_i') on [a, b] with $\sum \{\omega(x_i'+) - \omega(x_i-)\} < \delta$ the relation $\sum |F(x_i'+) - F(x_i-)| < \varepsilon$ is satisfied.

In [2] some results have been obtained for functions F(x) in class \mathfrak{A} which are AC - ω . In this paper we have introduced the definition of bounded var-

^(*) Indirizzo: Department of Mathematics, University of Burdwan, West Bengal, India.

^(**) Ricevuto: 8-I-1964.

56

iation relative to $\omega(x)$ of a function (or BV - ω function) belonging to \mathfrak{A} ; and obtaining some preliminary results it has been shown that a function F(x) which is AC - ω on [a, b] must be BV - ω on [a, b].

Throughout the paper we shall consider only those functions F(x) in class \mathfrak{A} for which $F(x_0+)$ and $F(x_0-)$, $x_0 \in I-\mathfrak{S}$, are finite, where $I=[a,\ b]$.

Let $\omega(a) = y_0 < y_1 < y_2 < ... < y_n = \omega(b)$ be any subdivision of $[\omega(a), \omega(b)]$ where $y_i \in \omega(I)$. For every y_i there is an $x_i \in I$ such that $y_i = \omega(x_i)$. If for an y_i there exist more than one x_i such that $\omega(x_i) = y_i$, we shall take any one x_i . It is obvious that $a \leq x_0 < x_1 < x_2 < ... < x_n \leq b$. We say that the points $x_0, x_1, x_2, ..., x_n$ form a subdivision of [a, b] relative to ω or is a ω -subdivision of [a, b]. Let F(x) be defined in [a, b] and in class \mathfrak{A} and let

$$V = \sum_{i=1}^{n} |F(x_i+) - F(x_{i-1}-)|$$
.

Definition. The least upper bound of the aggregate $\{V\}$ of sums V for all possible ω -subdivisions of [a, b] is called the total ω -variation of F(x) on [a, b] and is denoted by $V_{\omega}(F; a, b)$. If $V_{\omega}(F; a, b) < +\infty$, then F(x) is said to be a function of bounded variation relative to ω , BV - ω , on [a, b].

If $\omega(x)$ is constant in $[\alpha, \beta] \subset [a, b]$, then any function F(x) defined in [a, b] and in class \mathfrak{A} will always be assumed to be BV - ω on $[\alpha, \beta]$.

Theorem 1. Let F(x) be defined in [a,b] and belong to \mathfrak{A} . If F(x) is of bounded variation on [a,b], then it is BV- ω on [a,b].

Proof. Let D: $(a \le x_0 < x_1 < x_2 < ... < x_n \le b)$ be any ω -subdivision of [a, b]. We shall show that

(1)
$$\sum_{i=1}^{n} |F(x_{i}+) - F(x_{i-1}-)| \leq 2 \quad \bigvee_{i=1}^{b} (F),$$

where $\overset{b}{V}(F)$ stands for the total variation of F(x) in [a, b]. The following four cases come up for consideration

(i)
$$a < x_0, x_n < b,$$
 (ii) $a = x_0, x_n < b,$

(iii)
$$a < x_0, x_n = b,$$
 (iv) $a = x_0, x_n = b.$

We prove (1) for the case (i). The proof in the other cases will follow similarly. Choose the points ξ_0 , ξ_1 , ξ_2 , ..., ξ_{n-1} and η_1 , η_2 , ..., η_n of S such that

$$a < \xi_0 < x_0 < \xi_1 < x_1 < \eta_1 < \xi_2 < x_2 < \eta_2 < \ldots < \xi_{n-1} < x_{n-1} < \eta_{n-1} < x_n < \eta_n \; .$$

Then $[\xi_0, \eta_1]$, $[\xi_2, \eta_3]$, $[\xi_4, \eta_5]$, ... and $[\xi_1, \eta_2]$, $[\xi_3, \eta_4]$, $[\xi_5, \eta_6]$, ... form two sets of non-overlapping intervals in [a, b]. Since, by hypothesis, F(x) is of bounded variation in [a, b], we have

$$\sum_{i} |F(\eta_{i}) - F(\xi_{i-1})| \leq \bigvee_{a}^{b} (F) \quad (i = 1, 3, 5, ...)$$

and

$$\sum_{i} |F(\eta_{i}) - F(\xi_{i-1})| \leq \nabla(F) \qquad (i = 2, 4, 6, ...).$$

So,

$$\sum_{i=1}^{n} \left| \ F(\eta_i) - F(\xi_{i-1}) \ \right| \leqslant 2 \ \stackrel{b}{V}(F) \ .$$

Letting $\xi_i \to x_i$ — and $\eta_i \to x_i$ + over the points of S, we get

$$\sum_{i=1}^{n} |F(x_i+) - F(x_{i-1}-)| \leq 2 \bigvee_{a}^{b} (F).$$

Since D is any ω -subdivision of [a, b] it follows that F(x) is BV - ω on [a, b]. This proves the Theorem.

The following example shows that the converse of the above Theorem is not true. Let $\omega(x)$ and F(x) be defined in [0, 2] as follows:

$$\omega(x) = \left\{ egin{array}{ll} 0, & 0 \leqslant x \leqslant 1 \\ x-1, & 1 < x \leqslant 2 \end{array} \right.$$

and

Let $D: (0 \le x_0 < x_1 < x_2 < ... < x_n \le 2)$ be any ω -subdivision of [0, 2]. Then $0 \le x_0 \le 1$ and $x_1 > 1$.

Now,

$$\begin{split} V &= \sum_{i=1}^{n} \left| F(x_{i} +) - F(x_{i-1} -) \right| = \sum_{i=1}^{n} \left| F(x_{i}) - F(x_{i-1}) \right| \\ &\leq \left| F(x_{0}) \right| + \left| F(x_{1}) \right| + \sum_{i=0}^{n} \left| F(x_{i}) - F(x_{i-1}) \right| \leq 3 + \bigvee_{i=0}^{2} (F) < M, \end{split}$$

where M is a fixed constant because F(x) is of bounded variation on [1, 2]. The above inequality is true for any ω -subdivision of [0, 2]. Hence F(x) is BV - ω on [0, 2]. However, it is well-known that F(x) is not of bounded variation on [0, 2].

Theorem 2. If F(x) is BV - ω on [a, b], then $F(x\pm)$ is bounded on [a, b].

Proof. Let $K_1 = V_{\omega}(F; a, b) + |F(a+)|, K_2 = V_{\omega}(F; a, b) + |F(b-)|$ and $K = \max(K_1, K_2)$.

We consider the following cases.

(i) $\omega(x)$ is constant in [a, b].

In this case, since $\omega(x)$ is continuous in [a, b], F(x) is also continuous in [a, b]. Consequently F(x) is bounded in [a, b].

(ii) $\omega(a) < \omega(x) < \omega(b)$ for $x \in (a, b)$.

In this case the points a < x < b form a ω -subdivision of [a, b]. So

$$|F(x+) - F(a-)| + |F(b+) - F(x-)| \le V_{\omega}(F; a, b).$$

Hence

58

$$|F(x+)| \leq V_{\omega}(F; a, b) + |F(a+)| = K_1$$

and

$$|F(x-)| \leq V_{\omega}(F'; a, b) + |F(b-)| = K_2.$$

So,

$$|F(x \pm)| \leqslant K$$
 in $[a, b]$.

(iii) $\omega(x)$ does not satisfy (i) and (ii).

Let $\omega(x) = \omega(a)$ in $[a, \alpha]$ where $\alpha \geqslant a$ is the upper bound of the set $\{x : x \in [a, b], \ \omega(x) = \omega(a)\}$ and the interval $[a, \alpha]$ is closed or open in the right according as $\omega(\alpha) = \omega(a)$ or not. Similarly let $\omega(x) = \omega(b)$ in $[\beta, b]$, where $\beta \leqslant b$ is the lower bound of the set $\{x : x \in [a, b], \ \omega(x) = \omega(b)\}$ and the interval $[\beta, b]$ is closed or open in the left according as $\omega(\beta) = \omega(b)$ or not.

Let K' be the maximum of K, $|F(\alpha+)|$, $|F(\alpha-)|$, $|F(\beta+)|$, $|F(\beta-)|$. Let $\alpha > a$ and $\beta = b$. If $x \in (a, \alpha)$, then F(x) is continuous at x and x, b form a ω -subdivision of [a, b].

So, $|F(b+) - F(x-)| \le V_{\omega}(F; a, b)$, i.e.

$$|F(x)| \leqslant K_2 \leqslant K \leqslant K'$$
.

If $x \in (\alpha, \beta)$, then a, x, b form a ω -subdivision of [a, b]. Proceeding as in case (ii), it can be shown that

$$|F(x\pm)| \leqslant K \leqslant K'$$
.

So,

$$|F(x\pm)| \leqslant K' \quad \text{in } [a, b].$$

Similarly, considering the cases $\alpha = a$, $\beta < b$ and $\alpha > a$, $\beta < b$ it can be shown that $|F(x\pm)| \leq K'$, $x \in [a, b]$. This proves the theorem.

Theorem 3. If F(x) is BV- ω on [a, c] and [c, b], where a < c < b, then it is BV- ω on [a, b].

Proof. We may suppose that $\omega(x)$ is not constant in [a, b], because in that case F(x) is, by definition, BV - ω on [a, b]. Let $a \le x_0 < x_1 < x_2 < \dots < x_n \le b$ be any ω -subdivision of [a, b]. If $x_n \le c$, then $a \le x_0 < x_1 < x_2 < \dots < x_n \le c$ forms a ω -subdivision of [a, c] and so

(2)
$$V = \sum_{i=1}^{n} |F(x_i +) - F(x_{i-1} -)| \leqslant V_{\omega}(F; a, c).$$

If $x_n > c$, then for some positive integer $m(\leqslant n)$ $x_{m-1} \leqslant c < x_m$. We consider the following cases.

- (i) $\omega(x') < \omega(c) < \omega(x'')$ for $x' \in [a, c)$ and $x'' \in (c, b]$.
- (ii) $\omega(x)$ is constant in (α, β) , where $a \le \alpha \le c \le \beta \le b$, the two equalities at the ends do not hold simultaneously and the nature of the interval (α, β) is determined analogously to the case (iii) of Theorem 2.
- Case (i). If $x_{m-1} = c$, then $x_0, x_1, ..., x_{m-1}$ and $x_{m-1}, x_m, ..., x_n$ form ω -subdivisions of [a, c] and [c, b] respectively.

(3)
$$V = \sum_{i=1}^{n} |F(x_i+) - F(x_{i-1}-)| = \sum_{1}^{m-1} \dots + \sum_{m}^{n} \dots$$
$$\leq V_m(F; a, c) + V_m(F; c, b).$$

If $x_{m-1} < c$, the points $x_0, x_1, ..., x_{m-1}, c$ and $c, x_m, ..., x_n$ form ω -subdivisions of [a, c] and [c, b] respectively.

$$\begin{aligned} V &= \sum_{i=1}^{n} \left| F(x_{i}+) - F(x_{i-1}-) \right| \\ &= \sum_{i=1}^{m-1} \dots + \left| F(x_{m}+) - F(x_{m-1}-) \right| + \sum_{m+1}^{n} \dots \\ &\leq \left\{ \sum_{i=1}^{m-1} \dots + \left| F(c+) - F(x_{m-1}-) \right| \right\} + \left| F(c+) - F(c-) \right| \\ &+ \left\{ \left| F(x_{m}+) - F(c-) \right| + \sum_{m+1}^{n} \dots \right\} \\ &\leq V_{\omega}(F; \ a, \ c) + V_{\omega}(F; \ c, \ b) + \left| F(c+) - F(c-) \right|. \end{aligned}$$

Case (ii). Let $x_{m-1} \in (\alpha, \beta)$. If $x_m \in (\alpha, \beta)$, then (4) holds. Let $x_m \in (\alpha, \beta)$. If m = n (consequently $\beta = b$) then $x_0, x_1, ..., x_{n-1}, c$ form a ω -subdivision of [a, c] and so

$$(5) V = \sum_{1}^{n} |F(x_{i}+) - F(x_{i-1}-)| = \sum_{1}^{n-1} \dots + |F(x_{n}+) - F(x_{n-1}-)|$$

$$\leq \left\{ \sum_{1}^{n-1} \dots + |F(c+) - F(x_{n-1}-)| \right\} + |F(c+) - F(x_{n}+)|$$

$$\leq V_{\omega}(F; a, c) + |F(c+)| + |F(x_{n}+)|.$$

If m < n, then $x_0, x_1, ..., x_{m-1}, c$ and $x_m, x_{m+1}, ..., x_n$ form ω -subdivision of [a, c] and [c, b] respectively. So,

$$\begin{aligned} (6) \qquad V &= \sum_{1}^{n} \mid F(x_{i}+) - F(x_{i-1}-) \mid = \sum_{1}^{m-1} \dots + \mid F(x_{m}+) - F(x_{m-1}-) \mid + \sum_{m+1}^{n} \dots \\ &\leq \left\{ \sum_{1}^{m-1} \dots + \mid F(c+) - F(x_{m-1}-) \mid \right\} + \mid F(c+) - F(x_{m}+) \mid + \sum_{m+1}^{n} \dots \\ &\leq V_{\omega}(F; \ a, \ c) + V_{\omega}(F; \ c, \ b) + \mid F(c+) \mid + \mid F(x_{m}+) \mid . \end{aligned}$$

Let $x_{m-1} \in (\alpha, \beta)$. If $x_{m-1} = c$ and m > 1, then (3) holds. If $x_{m-1} = c$ and m = 1 (consequently $\alpha = a$), then $x_0, x_1, ..., x_n$ form a ω -subdivision of [c, b] and

(7)
$$V = \sum_{i=1}^{n} |F(x_{i+1}) - F(x_{i-1})| \leqslant V_{\omega}(F; c, b).$$

If $x_{m-1} < c$, then considering the cases m = 1 and m > 1 it can be shown that

(8)
$$V = \sum_{i=1}^{n} |F(x_{i} +) - F(x_{i-1} -)|$$

$$\leq V_{o}(F; c, b) + |F(c -)| + |F(x_{0} -)|$$

and

(9)
$$V \leqslant V_{\omega}(F; a, c) + V_{\omega}(F; c, b) + |F(c-)| + |F(x_{m-1}-)|$$

according as m = 1 and m > 1.

By Theorem 2, $F(x\pm)$ is bounded on [a, c] and [c, b], so there exists a constant K such that

$$|F(x\pm)| \leqslant K$$
 for x in $[a, b]$.

From (2), (3), ..., (9) it follows that

(10)
$$V = V_{\omega}(F; a, c) + V_{\omega}(F; c, b) + 2K.$$

Since (10) holds for any ω -subdivision of [a, b] it follows that F(x) is BV - ω on [a, b]. This proves the Theorem.

Theorem 4. If F(x) is AC - ω on [a, b] and if $\omega(x)$ is constant in (α, β) $\subset [a, b]$, then F(x) is also constant in (α, β) .

Proof. Since $\omega(x)$ is continuous in (α, β) , F(x) is continuous in (α, β) . Choose $\varepsilon > 0$ arbitrary. There exists a $\delta > 0$ such that for any set of non-overlapping intervals (x_i, x_i') in [a, b] with $\sum \{\omega(x_i'+) - \omega(x_i-)\} < \delta$, we have $\sum |F(x_i'+) - F(x_i-)| < \varepsilon$.

Let $c = \frac{1}{2}(\alpha + \beta)$ and let $x' \in (\alpha, c)$, $x'' \in (c, \beta)$. The intervals (x', c) and (c, x'') are non-overlapping and since $\omega(x)$ is constant in (α, β) , we have

$$\{\omega(c) - \omega(x')\} + \{\omega(x'') - \omega(c)\} = 0 < \delta.$$

So, $|F(c) - F(x')| + |F(x'') - F(c)| < \varepsilon$. Since $\varepsilon > 0$ is arbitrary, this implies that F(x') = F(c) = F(x'') and this proves the Theorem.

Theorem 5. If F(x) is AC - ω on [a, b], then it is BV - ω on [a, b].

Proof. Since F(x) is AC - ω on [a, b], there exists $\delta > 0$ such that for any set of non-overlapping intervals (x_i, x_i') on [a, b] for which $\sum_i \{ \omega(x_i'+) - \omega(x_i-) \} < \delta$, we have $\sum_i |F(x_i'+) - F(x_i-)| < 1$.

We consider the following cases.

(I) The saltus of $\omega(x)$ at every point of [a, b] is less than $\frac{1}{2} \delta$.

In this case [a, b] can be broken up into a finite number of sub-intervals $[c_0, c_1], [c_1, c_2], ..., [c_{N-1}, c_N]$ $(a = c_0 < c_1 < c_2 < ... < c_N = b)$ such that

(11)
$$\left\{\omega(c_r+) - \omega(c_{r-1}-)\right\} < \frac{1}{2}\delta \qquad (r=1, 2, ..., N).$$

Let $c_{r-1} \leqslant x_0 < x_1 < x_2 < \ldots < x_n \leqslant c_r$ be any ω -subdivision of $[c_{r-1}, c_r]$, $1 \leqslant r \leqslant N$. The set of intervals (x_{i-1}, x_i) are non-overlapping and hence by (11)

$$\sum_{i=1}^{n} \{ \omega(x_i +) - \omega(x_{i-1} -) \} < \delta.$$

So,

$$\sum_{i=1}^{n} |F(x_i+) - F(x_{i-1}-)| < 1.$$

Since this is true for any ω -subdivision of $[c_{r-1}, c_r]$, we have

$$V_{\omega}(F; c_{r-1}, c_r) \leqslant 1$$
.

Thus F(x) is BV - ω on each of the intervals $[c_0, c_1]$, $[c_1, c_2]$, ..., $[c_{N-1}, c_N]$ and consequently by Theorem 3, F(x) is BV - ω on [a, b].

(II) There exist points in [a, b] at which the saltus of $\omega(x)$ is $\geq \frac{1}{2} \delta$.

It is well-known [3] that these points are finite in number. Let them be $c_1, c_2, c_3, ..., c_m$ such that $c_1 < c_2 < ... < c_m$. In $[c_{r-1}, c_r]$ we choose points α, β $(\alpha < \beta)$ of S such that

$$\omega(\alpha) - \omega(c_{r-1}+) < \frac{1}{2} \delta \quad \text{and} \quad \omega(c_r-) - \omega(\beta) < \frac{1}{2} \delta .$$

At each point in $[\alpha, \beta]$ the saltus of $\omega(x)$ is less than $\frac{1}{2} \delta$ and so by case (I), F(x) is BV - ω on $[\alpha, \beta]$.

Now, let $c_{r-1} \leqslant x_0 < x_1 < x_2 < ... < x_n \leqslant \alpha$ be any ω -subdivision of $[c_{r-1}, \alpha]$. If $c_{r-1} < x_0$, then by (12)

$$\sum_{i=1}^{n} \left\{ \omega(x_i +) - \omega(x_{i-1} -) \right\} < \delta$$

and so

$$\sum_{i=1}^{n} |F(x_i+) - F(x_{i-1}-)| < 1.$$

If $c_{r-1} = x_0$, then we can choose a point ξ in $(x_0, x_1) \cap S$ such that $|F(x_0+) - F(\xi)| < 1$. Then

$$\begin{split} \sum_{i=1}^{n} \left| \ F(x_{i}+) - F(x_{i-1}-) \ \right| & \leq \left| \ F(x_{0}+) - F(\xi) \ \right| \ + \left| \ F(x_{0}+) - F(x_{0}-) \ \right| \\ & + \left\{ \ \left| \ F(x_{1}+) - F(\xi) \ \right| \ + \sum_{i=2}^{n} \left| \ F(x_{i}+) - F(x_{i-1}-) \ \right| \right\} \end{split}$$

$$<2~+K, \qquad \text{ where } \quad K=\left|~F(c_{r-1}+)-F(c_{r-1}-)~\right|~,$$

since (ξ, x_1) , (x_1, x_2) , ..., (x_{n-1}, x_n) is a system of non-overlapping intervals in $[e_{r-1}, \alpha]$ with

$$\left\{ \omega(x_1 +) - \omega(\xi) \right\} + \sum_{i=2}^{n} \left\{ \omega(x_i +) - \omega(x_{i-1} -) \right\} < \delta.$$

So, in any case

(13)
$$\sum_{i=1}^{n} |F(x_i +) - F(x_{i-1} -)| < 2 + K.$$

Since (13) is true for any ω -subdivision of $[c_{r-1}, \alpha]$, it follows that F(x) is BV - ω on $[c_{r-1}, \alpha]$. Similarly, it can be shown that F(x) is BV - ω on $[\beta, c_r]$. So, by Theorem 3, F(x) is BV - ω on $[c_{r-1}, c_r]$ and consequently by the same Theorem, BV - ω on $[\alpha, b]$. This proves the Theorem.

Finally, the author is thankful to Dr. B. K. LAHIRI for his kind help and suggestions in the preparation of the paper.

References.

- [1] R. L. Jeffery, The Theory of Functions of a Real Variable. Univ. Toronto Press, Toronto 1953 (cf. p. 119).
- [2] R. L. Jeffery, Generalised integrals with respect to functions of bounded variation. Canad. J. Math. 10 (1958), 617-626.
- [3] I. P. NATANSON, Theory of Functions of a Real Variable, Frederick Ungar Pub. Co., New York 1955 (cf. p. 205).

* * :