EMANUEL G. CALYS (*)

A Note on the Order and Type of Integral Functions. (**)

1. - In this Note we propose to comment on the following Theorem 1 of [1] and on Theorem 2 of [2].

Theorem 1 [1]. If $f_1(z) = \sum_{n=0}^{\infty} a_n z^n$, $f_2(z) = \sum_{n=0}^{\infty} b_n z^n$ be integral functions of the same order ϱ (0 $< \varrho < \infty$), and types T_1 (0 $< T_1 < \infty$) and T_2 (0 $< T_2 < \infty$) respectively and $f(z) = \sum_{n=0}^{\infty} c_n z^n$, where $|c_n| \sim |\sqrt{a_n b_n}|$, then f(z) is an integral function of order ϱ and type T such that $T \leqslant \sqrt{T_1 T_2}$.

Theorem 2 [2]. If $f_1(z) = \sum_{n=0}^{\infty} a_n z^n$ and $f_2(z) = \sum_{n=0}^{\infty} b_n z^n$ be integral functions of regular growth and of finite orders ϱ_1 , ϱ_2 respectively, then the function $f(z) = \sum_{n=0}^{\infty} c_n z^n$, where $\log (1/|c_n|) \sim \sqrt{\log (1/|a_n|) \log (1/|b_n|)}$, is an integral function of regular growth and order ϱ , such that $\sqrt{\varrho_1} \varrho_2 = \varrho$.

As pointed out by a reviewer [Math. Rev. 25 (1963), 2204, 2206] these theorems are not correct. We prove here a corrected version of these theorems. We state the following lemma [5] without proof.

Lemma 1. Let L(x) be a positive and continuous function such that $L(kx) \sim L(x)$ as $x \to \infty$, where k is a constant $(0 < k < \infty)$. Then for every $\varepsilon > 0$, $x^{-\varepsilon} L(x) \to 0$ as $x \to \infty$.

Theorem 1. If $f_1(z) = \sum_{n=0}^{\infty} a_n z^n$, $f_2(z) = \sum_{n=0}^{\infty} b_n z^n$ be integral functions of the same order ϱ (0 < ϱ < ∞), and types T_1 (0 < T_1 < ∞) and T_2 (0 < T_2 < ∞)

^(*) Ricevuto il 18-XI-1963.

^(**) Indirizzo: Department of Mathematics, University of Kansas, Lawrence, Kansas, U.S.A. .

respectively, such that $|b_n| \ge |a_n|/L(1/|a_n|)$ for $n > n_0$ and whenever $a_n \ne 0$, and $f(z) = \sum_{n=0}^{\infty} c_n z^n$, where $|c_n| \sim |\sqrt{a_n b_n}|$, then f(z) is an integral function of order ϱ and type T such that $T \le \sqrt{T_1 T_2}$.

Theorem 2. If $f_1(z) = \sum_{n=0}^{\infty} a_n z^n$ and $f_2(z) = \sum_{n=0}^{\infty} b_n z^n$ be integral functions of regular growth and finite orders ϱ_1 , ϱ_2 respectively such that $|a_n/a_{n+1}|$, $|b_n/b_{n+1}|$ be non-decreasing functions for $n > n_0$, then the function $f(z) = \sum_{n=0}^{\infty} c_n z^n$, where $\log (1/|c_n|) \sim \sqrt{\log (1/|a_n|) \log (1/|b_n|)}$, is an integral functions of regular growth and order $\varrho = \sqrt{\varrho_1 \varrho_2}$.

2. – It is known [3, pp. 9, 11] that $f(z) = \sum_{n=0}^{\infty} c_n z^n$ is an integral function of finite order ρ ($0 \le \rho < \infty$), if and only if,

(2.1)
$$\mu = \lim_{n \to \infty} \sup \frac{n \log n}{\log (1/|c_n|)}$$

is finite and then the order ϱ of f(z) is equal to μ . Let f(z) be of order ϱ (0 $< \varrho < \infty$) and define

(2.2)
$$\nu = \lim_{n \to \infty} \sup (n |c_n|^{\varrho/n}).$$

If $0 < \nu < \infty$ the function f(z) is of order ϱ and type T if and only if $\nu = eT\varrho$.

Lemma 2. If $f_1(z) = \sum_{n=0}^{\infty} a_n z^n$, $f_2(z) = \sum_{n=0}^{\infty} b_n z^n$ be integral functions of the same order ϱ (0 < ϱ < ∞) such that $|b_n| \ge |a_n|/L(1/|a_n|)$ for $n > n_0$ and whenever $a_n \ne 0$, where L(x) is as in Lemma 1, and $f(z) = \sum_{n=0}^{\infty} c_n z^n$, where $|c_n| \sim |\sqrt{b_n a_n}|$, then f(z) is an integral function of order ϱ .

Proof: Using (2.1) we have, for any $\varepsilon > 0$,

$$|a_n| < n^{-n/(\varrho+\varepsilon)}$$
, $n \ge n_1(\varepsilon)$, $|b_n| < n^{-n/(\varrho+\varepsilon)}$, $n \ge n_2(\varepsilon)$.

Hence, for sufficiently large n,

$$|a_n b_n| < n^{-2n/(\varrho+\varepsilon)},$$

so that

$$\begin{split} &|\sqrt{a_n\,b_n}| < n^{-n/(\varrho+\varepsilon)}\,, \\ &\log |\sqrt{a_n\,b_n}| < -n\log n/(\varrho\,+\,\varepsilon)\,, \\ &\frac{n\log n}{\log |\sqrt{a_n\,b_n}|^{-1}} < \varrho\,+\,\varepsilon\,. \end{split}$$

Hence

$$\lim_{n\to\infty}\sup\frac{n\log n}{\log |\sqrt{a_n\,b_n}|^{-1}}\leqslant\varrho$$

and, since $|c_n| \sim |\sqrt{b_n a_n}|$,

(2.3)
$$\lim_{n \to \infty} \sup \frac{n \log n_n}{\log (1/|c_n|)} \leq \varrho.$$

We now prove that

(2.4)
$$\limsup_{n \to \infty} \frac{n \log n}{\log (1/|e_n|)} \ge \varrho.$$

By hypothesis, $\varrho > 0$ and $\lim_{n \to \infty} \sup \frac{n \log n}{\log (1/|a_n|)} = \varrho$.

Therefore, there exists a sequence of $n = n_1, n_2, n_3, \dots$ such that

$$\lim_{n\to\infty}\frac{n\log n}{\log (1/|a_n|)}=\varrho\quad\text{with }a_n\neq 0\;.$$

Moreover, $|b_n| \geqslant \frac{|a_n|}{L(1/|a_n|)}$ for $n = n_k$, n_{k+1} , ... $(n_k > n_0)$, and hence

$$|c_n|^2 = (1 + o(1)) |a_n b_n| \geqslant \frac{(1 + o(1)) |a_n|^2}{L(1/|a_n|)}$$

for $n = n_k, n_{k+1}, ...$

Hence, for these n,

$$2 \log |c_n| \ge 2 \log |a_n| - \log L(1/|a_n|) + o(1)$$

$$= 2 \log |a_n| \left\{ 1 + \frac{\log L(1/|a_n|)}{2 \log (1/|a_n|)} \right\} + o(1) = 2 \left\{ 1 + o(1) \right\} \log |a_n| + o(1)$$

since $\log L(x)/\log x \to 0$ as $x \to \infty$, by Lemma 1. Hence,

$$\log (1/|c_n|) \leq \{1 + o(1)\} \log (1/|a_n|),$$

$$\frac{n\,\log n}{\log\left(1/|c_n|\right)} \geqslant \frac{n\,\log n}{\left\{\,1\,+\,o(1)\right\}\,\log\left(1/|a_n|\right)} \to \varrho\ .$$

This proves (2.4) which together with (2.3) gives

$$\varrho = \lim_{n \to \infty} \sup \frac{n \log n}{\log (1/|e_n|)} = \varrho(f).$$

Proof of Theorem 1. By Lemma 2, $\varrho(f) = \varrho(f_1) = \varrho(f_2) = \varrho$. Given $\varepsilon > 0$, we have, for sufficiently large n,

$$rac{n}{earrho}\,|a_n|^{arrho/n}\!<\!T_1+arepsilon, \quad rac{n}{earrho}\,|b_n|^{arrho/n}\!>\!T_2+arepsilon\;,$$

by (2.2). Hence,
$$\left(\frac{n}{e\varrho}\right)^{2} |a_{n}|^{\varrho/n} |b_{n}|^{\varrho/n} < (T_{1} + \varepsilon)(T_{2} + \varepsilon),$$

$$(1.1) \qquad \left(\frac{n}{e\varrho}\right) |\sqrt{a_n \, b_n}|^{\varrho/n} \, = \, \frac{n}{e\varrho} \, |a_n|^{\varrho/2n} |b_n|^{\varrho/2n} < \sqrt{(T_1 + \varepsilon)(T_2 + \varepsilon)}.$$

Since
$$\varrho < \infty$$
, $|c_n| \sim |\sqrt{a_n b_n}|$ implies $|c_n|^{\varrho/n} \sim |\sqrt{a_n b_n}|^{\varrho/n}$.

Therefore, since $\varrho(f) = \varrho$, from (1.1) we get

$$\frac{n}{e\varrho} |c_n|^{\varrho/n} = (1 + o(1)) \frac{n}{e\varrho} |\sqrt{a_n b_n}|^{\varrho/n} > \sqrt{(T_1 + \varepsilon)(T_2 + \varepsilon)} \{1 + o(1)\}$$

and hence
$$\limsup_{n\to\infty} \left\{ n \left| c_n \right|^{\varrho/n} \right\} = e \varrho T \leqslant e \varrho \sqrt{T_1 T_2} \text{ or } T \leqslant \sqrt{T_1 T_2}.$$

Remark: The theorem holds if instead of

 $|b_n| \geqslant \frac{|a_n|}{L(1/|a_n|)}$ for $n > n_0$ whenever $a_n \neq 0$, we assume $|a_n| \geqslant \frac{|b_n|}{L(1/|b_n|)}$ for $n > n_1$ whenever $b_n \neq 0$.

3. - Proof of Theorem 2. Since $|a_n/a_{n+1}|$ and $|b_n/b_{n+1}|$ are non decreasing for $n > n_0$, we have [4, Th. 2],

$$\lim_{n\to\infty}\inf\frac{n\log n}{\log (1/|a_n|)}=\lambda_1,$$

$$\lim_{n\to\infty}\inf\frac{n\log n}{\log\left(1/|b_n|\right)}=\lambda_2,$$

where λ_1 and λ_2 are the lower orders of $f_1(z)$ and $f_2(z)$ respectively. Moreover, since $\lambda_1 = \varrho_1$ and $\lambda_2 = \varrho_2$ by hypothesis,

$$\lim_{n\to\infty}\frac{n\log n}{\log\left(1/|a_n|\right)}=\varrho_1,$$

$$\lim_{n\to\infty}\frac{n\log n}{\log (1/|b_n|)}=\varrho_2.$$

Since $\log (1/|c_n|) \sim \sqrt{\log (1/|a_n|) \log (1/|b_n|)}$, we have

$$\sqrt{\varrho_1 \,\varrho_2} = \lim_{n \to \infty} \frac{n \log n}{\sqrt{\log \left(1/|a_n|\right) \log \left(1/|b_n|\right)}} = \lim_{n \to \infty} \frac{n \log n}{\log \left(1/|c_n|\right)} = \varrho.$$

Hence [4: Theorem 1, Corollary 2] $f(z) = \sum_{n=0}^{\infty} c_n z^n$ is an integral function of regular growth and order $\sqrt{\varrho_1 \varrho_2}$.

References.

- R. S. L. SRIVASTAVA, On the order and type of integral functions, Riv. Mat. Univ. Parma 10 (1959), 249-255.
- S. N. SRIVASTAVA, On the order and type of integral functions, Riv. Mat. Univ. Parma (2) 2 (1961), 265-280.
- 3. R. P. Boas, Entire Functions, Academic Press Inc., New York 1954.
- S. M. Shah, On the lower order of integral functions, Bull. Amer. Math. Soc. 52 (1946), 1046-1052.
- G. H. HARDY and W. W. ROGOSINSKI, Notes on Fourier series (III), Quart. J. Math., Oxford Ser. 16 (194b), 49-58.

