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On a Generalization of Bernstein Polynomials. (*¥)

§ 1. - Introduction.

A recent theorem of KoroVKIN [1] gives a necessary and sufficient condition
that a sequence of nonnegative linear operators () L, defined in C[a, b] have
the property that L,f — f uniformly for all f € C[a, b]. The condition is simply
that L,f — f for the particular functions f(x) =1, », and 2% The proof is an
adaptation of BERNSTEIN’s proof that the BERNSTEIN polynomials

(1) (B.f)(@) : = éo f(r—j) (Z) 2 (1 — =

converge uniformly to f on [0, 1]. KorovkiN’s theorem explains why the opera-
tors B, defined by (1) originate in the identity

) 1o+ 1—a) =3 (”’) (L — )7

p=0\"

,\
Lo

and indeed why all generalizations of the BERSIEIN polynomials seem to be
based on some identity such as this. See for example Kac [2], MEYER- KONIG
and ZeLLER [8], Szisz [4], LoreNTZ [5].

(*) Indirizzo: Department of Mathematics, University of Chicago, Chicago 37,
Illinois, U.S.A..
(**) Ricevuto il 28-VI-1963.

The preparation of this paper was sponsored by the Office of Naval Research
and by the United States Air Force Office of Scientific Resaerch under contract AF-
-AFTOSR-77-63.

() An operator L is nonnegative if f(#)> 0 (for all x) implies (Lf)(x)> 0 (for all z).
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The object of this Note is to draw attention to an interesting generali-
zation of the binomial theorem due to JExsex [6], and to show then that a
generalization of the BERNSTEIN polynomials may be based upon it. JENSEN’S
formula is

n

3) ( +y + 0 = Z( )( By [y (n— )BT

y=o\?

The proof of (3) starts with LAaGrANGE's formula

0 =5 e e ot | ]

i _zfl(z) .Mv=0 »!

and proceeds by setting @D(2) = == and f(z) = ™.

§ 2. - The operators and their convergence.

In analogy with the BERNSTEIN polynomials we set ¥ =1— in (3) to ob-
tain the following extension of (2)

n

1 LR G BN i

y=0

The desired generalization of the BERNSTEIN polynomials is, then, in analogy
with (1)

B) (@)= +ap gf(~) (?:) o (@ + vy [L—a + — .

It is clear that the BERNSTEIN polynomials form a special case of (5) obtained
by setting f = 0. The problem we propose to solve is the following: for what
values of # will the operators P, have the property that P,f —f uniformly
on [0, 1] for all feC[0, 1] ?

Theorem 1. IfO0Zf =on)thenP,f—f (u%i}‘ormlyj) for all f € C[0, 1].

The proof can be made to depend on the following lemma.
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Lemma 1. The functions

Sk, ny 2, y) 1 = z (”) (& Vﬁ)rﬂ:"l [?/ -~ (’ﬂz—-’)})ﬂ]n"”
pe=0 \ ¥
satisfy the reduction formula

Sk, n, @, y) =« S(k—1, n, x, y) + a8 8k, n—1, z + B, ¥).

The proof of the Lemma is a straightforward calculation and is therefore
omitted. By repeated use of the reduction formula, noting from (3) that
z 8(0, n, @, ¥) = (# + vy -+ n8)", we may show that

n

8@, ny, @, y) = ZD(:)?/! B (@ 4y +ap)" .

o

Replacing »! in this last expression by f t"e~* di and using the binomial theorem
0

we obtain

[~}

(6) 8w y) = [t +y 0B 4 ) dt.
0

In a similar manner we may reduce S(2, n, @, y) to the following

8, n, @, y) :z (@ +vp) (:?:) I8, n—w, & 4 B, ¥)

» =0

and thence to

(M 82, n, &, ¥) :J’e‘* dtfe" ds[o(e +y -+ nf + 18 - sp)r +
0 o )
+nfs(w +y +af +1 + sp)r"1].

These formulas will be of use presently. In order to prove Theorem 1 it is suffi-
cient, by KoROVEIN’S result, to verify that the operator P, is nonnegative
and that P,f—f for f(w) =1, », and «° From the definition it is clear
that P, is nonnegative when f=0. It is also clear from (4) that P,1 =1.
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Going on to f(f) =1t we have

v v

(P(e) = (1 + ) 3 (—) () ofe + 98y [L—a + (L— )" =

=@ +np)™ mnil (% B 1) @+p+l—a+ m—1—w)p]" " =

yes 0
= (1 +af)y"2e S, n—1, 2 + 5, L—a).

Using (6) this last expression becomes

=] w

a1 +afy [ + nf +tf)r At = — [ ot (1 I )H at = : Ao
i T 1 4np) Y o

0 0

To show that 4, tends to 1, we make the change of variable u = #f/(1 -+ nf)
to get

1
A :Efe—’(l ) du .
0

Using the estimate
(8) l—nu) = (1 +u)rse™,
we have

Bt f ete™(1 — ) du < Ay < B2 f e~te™ du .
0 1]

Sinee —t -+ nu = — u/f, the upper bound on 4, is 1 while the lower bound
is 1 — 2np2. Hence, if § == o{u™) then 4, —1.
Proceeding to the function f(f) =1, we have

1

Paia) = (@ +npr 3 2 (") o + 9Byl —0 + (el =

pes '

o — 1 »(y — 1) v} /n y—

K

= ? ! (L 4+ a2 S2, n—2, z + 26,1 —ua) —i—:; (Pat)(z) .

1
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1
From the earlier Work,?—Z (P#)(®) - 0. The other term can be written with

the aid of (7) as

(9) L;i 1+ oLﬁ)“?m(fv -+ 2f) /ﬁe“‘ di [ e=*(1 4+ 2f +tf +sp)nds +
0 0
+ (n—1)(1 + nf)y" a2 [ et dt [ se=*(L - nf - 18 4 sf)y1 ds .
0 0

The second term of (9) is positive and may be bounded above using (8) by

<=3

an — 1) r T if -+ sf
1 - 11.5—, ¢ dt.// e exp [1 “+ nf

a 0

_xn — 1)ﬂ2<1 -+ nﬁ)*‘
(n—ml)] ds = T N1/

which tends uniformly to zero if f = o(n~?). The first term of (9) can be’ con-
fined by (8) to an interval

w—1 (1 _%_ nﬁ)2x(m —§~ 218)(1 . 6%,82) <z </n, R

T T

z(e + 201 + np)r.

Thus if f = o(n1) this term tends uniformly to z2.

§ 3. - Other polynomial operators.
Another generalization of BERNSTEIN polynomials can be obtained from
another formula of JENSEN [6],

n

@+ 9@ +y +aprr=3 (") oo + By ly + 0 —ngr,

p=0

The corresponding operators @, are now defined by the equation

@fa) s =1+ gy 3 (1) 2) 2o + 990 — @)L — 0+ (g

v==0 7
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It is clear that ,1 = 1. Taking f({) = we find that
(@) @) =l + 26y [8A, n—1, v + £, 1 —m)—
—pfn—1) 81, n—2, & +f 1—uw+p)].

From the integral representation of S, formula (6), we see that (Q.)(z) -
uniformly if § == o(n~1). Taking f(f) = ¢ we find that

(Qu3)(z) =2 + unf) 8@, n—2, 2 + 28, 1 —a)—
(n—2)8(2, n—3, & +2p, 1—a + B,

and again from the earlier work, this tends uniformly to a* if § = o(n™?).

§ 4. - Further propertics of the operators.

For the operators P, of equation (5) it is possible to establish a generalization
of VORONOWSKAJA’s result about BERNSTEIN polynomials.

Theorem 2. If f is bounded in [0, 1] and possesses a second derivative
at a point w©, and if fn* — ¢ then

1 i 2 9
Al(P)@) — f@)] = 5 @) o —a* + 200].
The proof proceeds from the equation
) i@+ (5= [0 0
1) =@ = (e )r@ + (L —af [ 1@ +0(2—a)],
from which it follows that

n[(Pf)(z) — f(@)] = n @) [(Pult) (@) — ] + = f” ) [(Put?) (@) — 2(Put)(w) + 2] +

£t g 30— af 07— a)(7) @+ o+ )l

y=0 7

From earlier estimates, we know that [ (Pat)w) —a] = 0. If fn® ->¢ we can
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show from the earlier work that
[(Pot?)(@) — 2a(P,t)() + @*] — & — a? -+ e,

The last term goes to zero by an argument similar to that given in [5, p. 22].
A result of KANTOROVITCH on BERNSTEIN polynomials can also be proved
for the operators P,.

Theorem3. If f(2) is analytic in the interior of an ellipse B with foci 0,
1 and if 0 =< B == o(n™1), then (P,f)(z) — f(z) uniformly in any closed set imterior
to E. .

The proof will be exactly the same as in [5, p. 90] after establishing the
following Lemma.

Lemma 2. If fis a polynomial of degree <k, then so is P.f, for all n.

Proof. We proceed by induction on k. If f is of degree < 0, the lemma
is true because P,0 =0 and P,l = 1. Now assume the lemma for polyno-
mials of degree < k— 1. Since P, is a linear operator it will be enough if we
show that P,f is of degree < % for the particular function

Computing in a straightforward way we find that

v — 1) .. (v —k + 1

(Paf)®w) =a ! A +ap)y Sk, n—Fk,  + kB, 1—ua)

nk

The proof will be complete if we can show that S(k, n,  + a, 1 — %) is a poly-
nomial of degree < k—1 for all #n. That this is the case may be proved by in-
duction on k. For k = 1, equation (6) shows at once that S(1, n, # + ¢, 1 — )
is a constant. If our assertion is true for S(k, n, # + @, 1 — &) then we apply
the reduction formula of Lemma 1 to S(k + 1, %, # + a, 1 —=,) eventually
obtaining a sum of terms of the form

(4,2 + B,) 8(ky, n—v, © + a -8, 1 — )

each of which, by the induction hypothssis, is a polynomial of degree < k.
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