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A Problem in Partitions

Related to the Stirlin g Numbers. (*%)

1. - Introduction.

Let

1z r
(1.1) ; S(n, ») ::;—g 1 <S>s"

denote the STIRLING number of the second kind. In a recent paper [1] the writer
has discussed some properties of the polynomial

(1.2) (@) =3 S(n, r)ar;
: r=0

in particular the factorization (mod 2) of A,(x) is determined. If we put

(1'3) Cpp == *S'(‘"’ -+ 17 o+ ])7

it is proved that

W o— o N
Cujor = ( ” > (mod 2) 0<2r << n)

(1.4)

no—r — 1
Coary = ( N ) (mod 2) @r +1<n).

(*) Indirizzo: Department of Mathematics, Duke University, Durham, North
Carolina, U.S.A.. : ‘
(**) Supported in part by NSP grant GP - 1593. — Ricevuto il 9-VII-1963.
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Also if ,(n) denotes the number of odd Cn,or @A Oy(n) denotes the numbel of
0dd ¢, ar41, then by (1.3) and (1.4)

(1.5) 0,(2n + 1) == B4(n), Gs(20) = Oy(n) -+ By(n.—1)
and
(1.6) Oy(m 4 1) == Oy(n) .

Moreover it follows easily from (1.5) that
(1.7) S Op(n) am = TT (1 4+ a2 £ 2™,
n=40 ne=

The first few values of 0,(n) are easily computed.

0u0) =1, O,(1) =1, 0,2) =2, 04(3) =1, O4) =3, 0n(3) =2,
0,(6) =3, 07) =1, 0(8) =4, 0,(9) =3, 6,(10) =5, O,(11) =2,

0,(12) = 5, 0,(13) = 3, 6,(14) =5, 0,(15) =1.
Conversely if we put

(1.8) G@) =TT + o -+ o)

n=0

then

G) = (1 + & - a%) G(2?)

and (1.5) follows at once.
From (1.7) it is clear that 0,(n) can also be defined as the number of partitions

(1.9) =g -2 Lomge2t 0 <n, <2)
subject to the following conditions:

(i) if », =1 then =, <1,
(i) if my =2 then =, <1,
(i) if n, == 2 then =, <1,

and so on.
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The object of the present paper is to obtain some additional properties of
Oy(n). A summary of the results will be found at the end of the paper.

2. - We observe first that (1.4) can be proved rapidly by making use of
the familiar formula (see for example [3, p. 45, ex. 15])
@ 1

JSI L, 7 e -
,,%“” ) o T e )

Using (1.3) this becomes

w 1
(2-1 ) z Copp g BT = .
ey : (I —a2)(1 —2x) ... (1— (r 4 D)
If
A(w) =3 a, an, B(z) = 3 b, "
n=0 n=0

are two (formal) power series with integral coefficients, the statement

A(z) = B(z) (mod m)
means
ay = b, (mod m) (n=0,1, 2, ...),

Thus if we replace » by 2», (2.1) implies

@
E 6n+2r,2r T = (1 — &)yt (mOd 2) .
n=0

Since

we get
Cotoror = < / > ) (mod 2),
wich is equivalent to the first of (1.4). Similarly (2.1) yields

©
2 Cniartrort @" = (1 — @)1 (mod 2),
n=o
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so that

Loy

'n/ H
Cntarta,arty E( " > {mod 2),

which is equivalent to the second half of (1.4).
We turn next to the function 0,(n). If » >1, m > 1 it follows from the first
of (1.5) that

Oo(@rm— 1) = 0,(2m —1) .

This evidently implies
2.2) 0,(2"m —1) = Gylm — 1) r=1, m>1).
In particular, when m =1, we get
2.3) 0o(2r—1) =1 .
Similarly from the second of (1.5) we get

Bo(2mm) == 0p(272m) -+ 64(2m — 1),
which by (2.2) reduces to
(2.4) 0s(2mm) = 0o(27"2m) -+ Oo(m — 1) (r>=1, m>1).
Repeated application of (2.4) yields
(2.5) 0(2mm) = Oy(m) + 1 Oy(m —1) (r>0, m>1).
‘In particular, for m =1, (2.5) reduces to
(2.6) 05(27) == -1 .
We note also that by the first of (1.5)
(2.7) Bo2mm —+ 1) == G,(272m) (r=1, m>1),
and in particular, by (2.6),

@.8) 0527 4 1) =7 (r>1).
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In (1.4) take m =25 -~ 1, s >1, so that
Oo(2rs - 27) == 04(2% + 1) 7 0,(2°) .
Making use of (2.5) and (2.8), this becomes
2.9 Oo(27F8 1 27) =z g F- 4 4+ 8 (r>0,8>1).
Similarly we have for s > 1

0p(27+5 — 27) == 04(20— 1) -+ 7 By(25— 2).
Since by (1.5)

05(2° — 2) == (251 —1) + 0,(2°-1—2),
it follows that

(2.10) O —2) =5 e,

so that
(2.11) Gp27t5—27) =1 + s (r>0,s>1).

Note that (2.11) includes both (2.3) and (2.5).

3. - Returning to (2.5) we talke

m == 25+t L 2s ] (s>=1,t>1).
We get

Bo(27F5+t 4 275 L 2r) == (2t L 25 1) g G2 4 29

Since for s > 1

00(28’H + 28 4 1) bl 00(23+£_1 + 25—1) ’
it follows from (2.9) that

Ou(2rtett - 2rve 4.27) =5 41— 1 + (s— 1)t +7(s +t +s1),
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so that

(3.1) fy(2ristt 4 Ores 4 27) = (r +1)s Lt L (r +1)s t—1

(r>=0,s=1,t>=1).
In order to get a general result of this kind we put

(3.2) q == 2™ —§— 21‘0—{.1“ —.i— ver P OF T +Tr; s

where

o0, m>1, ., 21,
It is also convenient to put
(3.3) m, == - 2T L 9Ty e FT (0 <j<k),
so that n, == n. It is clear from (3.3) that
(3.4) : ny =27 (1 -4 n;,,) O<j<k).
Thus (2.5) becomes
(3.5) Ou(n) = Ou(1 =+ 1) -+ 7o Oa(na) -
Since n, is even we have

Oo(1 + ny) = By(n/2) .

But
1y ) n
o = 0n(3) + 0.5 = 1)
so that (3.5) becomes
. Ty
Go(m) = (1 ~+ 7o) Ogl) — By (; — ].) .

Now by (2.2) and (3.4)

0, (%1 — ) = Go(2"7 (1 4 o) —1) = O(n).
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Therefore finally

(3.6) Oo(1) = (1 + 7o) Og(n,) — Ogle)

This formula was stated without proof in [1].
4. - With the notation (3.4) we may think of (3.6) as a recurrence formula.

In general we have

(4.1) Oo(my) == (1 + 1) Oulga) — Oo(12) (0 <j<h).
A second formula of a similar kind can be stated. Put

(4.2) my == 2T £ 27 L Qfetnt e dry

where as before

Then we have
(4.3) Bo(m;) = (1 + 7y) Bo(m;—y) — Oo(m; — 2) G=1),
where m_; = 0. Indeed (4.3) is equivalent to (4.1) as follows by comparison of

(4.2) and (3.3).
A more general relation is

(4.4) Oo(n) = O(m,) Og(n41) — Oo(my=y) Oy(10,42) 0<j<k)
where m—; = #y4; = 0. This is easily proved by induction with respect to 4.

The recurrence (4.3) suggests a connection with continued fractions. How-
ever it is more convenient to make use of continuanis (see [2, pp. 466-474]).
We recall the following definition.

If ag, @yy .oy ry by, ..., b, are indeterminates and p, is defined by means of
the set of equations

(4.5) P; = 0; Py + b;p;-a 1< i< k)
together with the initial conditions P =1, py = a,, then we put

by, <y b
(4.6) Py = K( ’ k) .

Vid
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Comparing (4.5) with (4.3) we have

a, =1 -7, by, =—1 (1 <j<k),
go that
— 1, v, =1
Oola2) :I(( ) ;
T+, Vg, vy Dm0

for brevity we write this in the form
(4.7) Ofn) == K (1 -+ 70, 1 4+ 74y ooy 1 4 72)
By known properties of continuants we have for example
(4.8) E'@ 47y 147, vy 1 +7) =K1 +7 1 4 1pegy ooy 1 470)
We may also mention the determinantal representation

147, —1 0
—1 14 —1

(4.9) Oy(n) = 0 —1 1+
— 1 1 7y
5. - When
(5.1) Fo == Ty == ee. mE Py =2 )

we can find a simple explicit formula for 0,(n). Indeed in this case (4.3) becomes
(5.2) Oo(m;) = (1 + 1) Op(m,_,) — Oolm; ) s
a recurrence with constant coefficients and characteristic equation

2—01 4+ -+1=0.

Therefore if we put
6 = L4744/ 72— 4

2

P
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and make use of the initial conditions

Oom_y) =1,  Op(mg) = +1,

we find easily that

87:-}-2 — s—k—z

(3:3) Ou(n) == — === (r #1),
where
k+Dr ]
n =2

This formula holds for all » > 2. For » =1, however, the recurrence (5.2)
with the initial conditions

Oolmey) =1,  Oy(my,) =2

has the solution

(5.4) Oo(n) ==k -+ 2 (r =1).
This is equivalent to
6(2(2* —1)) =k 41,
which is in agreement with (2.11).
If in place of (5.1) we assume that
(5'5) T > 1’ (R S N
then by (3.6)
Og(1) = (1 + 79) Oy(ny) — Bo(2) ,

where now

Qkr . ] Q-7 __ ]
Z 2

Py = 27 , Mg == 27—,
2r— 1 9r— 1

Thus by (5.3) and (5.4) we get

Tl . gkl L. ok
(5.6) Oo(m) = (1 -+ 1p) e — T (r 1),

& — g1 g— g1

(3.7) Ou(n) =7y (b +1) +1 (r==1),
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where in both (5.6) and (5.7)

glkt+ur 1
R AL S —
27— 1

6. — It is evident from (1.7) that
(6.1) Ou(2) > 1;

in view of (2.3) this lower bound cannot be improved. It is of some interest to
find all # such that

(6.2) Og(n) ==1 .
If 2 = 2m > 0 we have
0o(2m) == Oy(m) - Oy(m—1) > 2.

Thus the solutions of (6.2) are necessarily odd. If n == 2m -1, (6.2) implies
Op(m) = 1, so that m is also odd. Proceeding in this way we conclude that

(6.3) B o==2r—1 .

We see therefore that (6.2) is satisfied if and only if = is of the form (6.3)
Another way of stating this result is

(6.4) Oo(n) > 2 (m%2"—1).
If
(6.5) Oo(n) =2

and n == 2m, we get

Oo(m) + Gp(im — 1) = 2,

80 that Oy(m) == Oy(m —1) = 1. Since either m or m — 1 is even we must have
m == 1. Next if n = 2m -+ 1 we get O,(m) = 2; if m is even it follows as before
that m == 2. Continuing in this way we see that the solutions of (6.5) are given
by :

n =2, b, 11, 23, 47, ....
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If », is the r-th term in this sequence, we have

Woyy =20, 4+ 1 (1, == 2);
it follows that
(6.6) 'n“r o 2r _,;_ 2r—~l — 1 B

Thus (6.5) is satisfied if and only if # is of the form (6.6). Note that n, is odd
for » > 1.

Finally if
(6.7) Oo(n) == 3
and » = 2m we get

Oo(m) 4~ Og(im —1) = 3 .

It
(6.8) Oo(m) = 2, Oo(m —1) == 1,

then by the results just proved

M1 =27—1, g ==2s L2511
thus

28 L 9s-1_ 7 :_—_ 27”’
80 that 7 ==s =1, n =4, If

(6.9) Oo(m) == 1,  Oy(m—1) =2,
we get

mo==27—1, m—1 =25 L 2e-1 1,

so that

98 L9s1m9r_ ]
This implies s =1, » =2, m = 6. Thus the only even solutions of (6.7) are
o= 4, 6.

Next if #=2m -+ 1, (6.7) implies Oy(m) = 3. Coxnpal‘ing this with the dis-
cussion of (6.5) we see that the solutions of (6.7) ave given by the following two



1
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sequences:

n =4, 9, 19, 39, ...; 6, 13, 17, 55, ....
As before we have the recurrence

Rpry =20, + 1.
We find that
(6.10) R o= 2T 21 (r=1,2 3, ..,
(6.11) 7 o= 3,27 4 2711 (r=1,2 3, ...
Thus (6.7) is satisfied if and only if » is of the form (6.10) or (6.11). The sequen-
ces evidently have no terms in common.

The equation

(6.12) Og(n) =1,
where ¢ is an assigned positive integer, is always solvable. For example by (2.6)
one solution is # = 2+ From the above discussion it is clear that for ¢>1
there exist even solutions
(6.13) N == 6y, Cgy O3y ..
and that all solutions are given by

(6.14) ¢, Ze,+1, de, +3, 8¢, -7, ... (=12, 3,...

Moreover we can assert that the number of even solutions (6.13) is finite. This
is an immediate consequence of the following inequality

(6.15) : 0o(2n) > -+ 1 (21 << 27),

We shall prove (6.15) by induction with respect to ». For + =1, »n =1
the formula is obvious. Assume that (6.15) holds up to and including the value
r—1. If # == 271 there is nothing to prove. We shall accordingly assume that
7 > 271 Since

0p(2n) == Og(n) -+ Oy(n—1),
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we geb
0s(2n) > 1 + O4(n) (n even),
Go(20) > 1 + O4(n—1) ' (n odd).
Since # > 271, % {(n—1) > 2r2 50 that by the inductive hypothesis
0, (n) >=r (n even),
Op(n—1) > ‘ (n odd).

This evidently completes the proof of (6.15).
It follows from (6.15) that if

(6.16) ‘00('2%) =1,
then
(6.17) n < 201,

For example, when { = 3, we get n <4, Wwhich agrees with the results
obtained above for (6.7). Moreover (6.17) furnishes an upper bound for the
number of even solutions of (6.12). Thus (6.7) is satisfied if and only if n is
of the form (6.10) or (6.11). The sequences evidently have no terms in common.

7. — It is not difficult to get an upper bound for Gy(n). With the notation
(3.2), (£.7) we have, using (3.6),

Oo(1) < (1 + 1) Bo(my) .
It follows that
7.1) Op{n) < (L + ) +71) oo (1 - 7%)

and that the inequality is strict for £ >0.
The bound (7.1) can be replaced by a bound that depends-only on n and k.
We shall assume k> 1. Then by (3.2)

(L Fre) + @ A1) 4+ + @ 4 n) <logn,
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so that

(1 1) b (L 7) e+ (1 - 7) _logyn
PR Skl

Since the geometric mean of & -+ 1 positive numbers < the arithmetic mean
we get

{@ 4 )@ +99) o (L + 1) PO L 1;%% .
It follows that
(7.2) Oo(n) << C:_%: Y)kﬁ .
We remark that in the special case
(7.3) Po == Ty == 0. =T =17,

the upper bound in (7.2) cannot be improved. More precisely, when (7.3) holds
and %k is fixed, we have

(r = o0) .

log, n )"+1

(7.4) Os(m) N(k 1

Indeed by (5.3)

Bo(n) ~ T2
Since & ~ r, it follows that
(7.5) By ~2FT1,
On the other hand since
QE+lr __
N =27 7—;—-]—— ,

it is evident that

log,n ~(k +1)7r,

so that (7.4) and (7.5) are equivalent.
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8. - Summary of results.

§ 2. Proof of (1.4). Some simple properties of O,(n).

§ 3. Evaluation of ,(2r+s+t & 2r+s o 27) and proof of the recurrence
(3.6).

§ 4. The recurrence (4.3) and the expression of f,(n) as a continuant.
Representation as a determinant (4.9).

§ 5.  Explicit evaluation when 7, = Ty =...=9,.0r when 1 = ... =r,.

§ 6. Solution of the equations 0,(n) = 1,2, 3. For given ¢ > 1, the equation
Oo(n) =1

has a finite number of even solutions €1y -y €y, Where N = N(¢), such that all
solutions 'are given by

€y 2¢; +1, de, +3, 8¢, -7, ... (j =1, .., N).

§ 7. Upper bound for 0,(n). An asymptotic formula for 6,(») when
To =0y Sm . ==y
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