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On Some Dynamical Problems

Arising in the Theory of Lubrication. - 1II. (*%)

16. - Introduction.

A further (1) contribution to the theory of lubrication is given here. For
ease of reference the numbering of sections is continued from Parts T and II
and the notation is made consistent with that used earlier (see Sect. 11); sym-
bols introduced is this part are:

4, eccentricity ratio under steady load;

W, load on journal;

w = W/(mcw?), non-dimensional load ratio;

B, angular coordinate of O in a fixed cylindrical system of reference
with origin in ©Q (as before); the axis from which angles are counted is taken
now to be orviented as the load vector W (usunally the downward vertical).

We study here the behaviour of a rigid heavy rotor housed in 2 fully lubri-
cated bearing during parallel whirl of large amplitude. The bearing is assumed
t0 be either very long (case-1) or very short (case 2) so that we can take, for the
forces due to the lubricant and acting on the journal, the explicit expressions
obtained by SOMMERFELD [i. e. expressions (7.1)] and respectively by QCVIRK
[i. e. expressions (12.13)]. The attitude locus of the centre of the journal O
under steady load is in both cases a straight line through the centre of the

(*) Indirizzo: C.8.C.E., Istituto di Fisica, Universitd, Pisa, Italia.

This research was carried out at the « Centro Studi Caleolatrici Elettroniche
del C.N.R., University of Pisa ».
(1) Parts I and II appeared in « Riv. Mat. Univ. Parma (2) 1 (1960), 1-20 and (2) 4
(1963), 1-21». :
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50 G. CAPRIZ, L. GALLETTI, A, LARATTA [2]

bearing £2: if the load is W, the eccentricity ratio in the steady state 4 is given
by

W A
(16.1) Galbne {1+ (A32)] (0 — AP
in case 1 and by
2¢* TV A

aRbPyem (1 — Azpe

in case 2; and the attitude angle § is equal #/2, in both cases.

A linear analysis shows that this static position of the journal under load
is unstable (?). Numerical integration of the non-linear equations has led to some
contrasting results: Hormes found that with increasing time the whirl beco-
mes nearly circular while the amplitude increases indefinitely (though at
slowing rate) towards the clearance ¢ and that the whirl frequency tends to half
the running frequency (*). For case 2 REDDI and TRUMPLER seem to have found
instead that complete instability is not an absolute characteristic of the
system: under some conditions the journal path may settle down to an orbit
well within the clearance circle; furthermore that in cases of complete ingta-
bility, the journal hits the bearing within a finite time (%).

We have studied the problem analytically and have carried out also many
approximate calculations. Our results confirm the findings of HormEs and
contradict those of REpDI and TrRUMPLER: the equations which describe the
movement of the journal centre 0 do not appear to admit solutions represen-

(2) See, for istance, R. Horass, Oil-whirl characleristics of a rigid rotor in a 3600
jowrnal bearing, Proc. Inst. Mech. Engns, Advance copy P II/63.
(*) This last property is a necessary corollary of the first as can be proved through
the following qualitative argument.
The rate at which work is done by the oil forces in a nearly circular whirl is appro-
ximately
TRV alw — 2 5)B .
2e (1 —a2pir’

this quantity is positive provided that §<w/2. The amplitude of whirl (and hrnce the
kinetic energy of the journal) may increase only if B <w/2, but on the other hand the

I . . 1 ; . 1 :
kinetic energy is approximately 5 ma?c?f?, a gquantity that cannot exceed B me? B2

It follows that the energy supply to the journal (work done by oil forces) must tend to
zero, i.e. that B— w/2.

() M. M. Repp1 and P. R. TruspLER, Stabilily of the high-speed journal bearing
under steady load, J. Eng. Industry, Trans. A.S.M.E., 84 (1962), 351-358.
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ting paths of O ending abruptly at the periphery of the clearance civele; it seems
also unlikely that closed paths exist for 0. We show, however, that such
paths exist for a dynamic system which our system approaches when W and
B, (: ﬂl,w” tend to infinity.

i 2¢/2¢ mw

These analytical results are obtained in Sect. 17. Bxplicit reference is made
there to the case of very short bearings; perfectly parallel arguments apply,
however, also to the alternative case of long bearings; a brief summary of de-
velopments valid for that case is in Sect. 18.

In the following Sect. 19 we describe approximate calculations which have
led to the tracing of paths of O for a number of special values of the parameters.
These paths behave exactly according to the forecasts of Sects. 17, 18.

Details of the numerical procedures used ave also given.

17, « Analysis of the case of short hearings.

The equations of motion of the journal under load within a short bearing
are [see eqns. (12.14)]: '

ma = maft — 28, a(l + 2a2)(1 — @252 -+ (W/e) cos f
(17.1)
) maﬁ = —2maf + &, alw — 2B)(1 — a?)-372 — (Wie)sin .

It appears from the first eqn. (17.1) that, in the cases where the whirling
speed £ is bounded and « tends to 1 with increasing time, either (i) e tends
to zero, as a tends to 1, of an order not less than 5/2 in 1 — a, or (ii) the deve-
lopment of « is approximately regulated for ¢« ~1 by the equation

. — . 1 - 2q
(17.2) me = — 2572 @ — i
(1 —a?)pr

because, then the other two terms on the r.h.s. become negligible. But this
second istance is contradictory; all solutions a(t) of equation (17.2) tend for
t —co to a value less than 1, against our hypothesis (5).

{*) In the phase space (a, v) [v = ¢] the trajectories of (17.2) are graphs of the func-
. - 28, r142a°
tions v = v — = [

da . All these trajectories diverge to the point (1, — o).

mo ) 1—a*

a
The point P = {a(t), a(¢)} describes with inereasing ¢ one, &, of these trajectories in
the sense in which [ v } decreases. For t — oo, P tends over T to the point of intersection
of B with the axis v = 0.

5%
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Hence only the first alternative remains: but if
a ~K(1 —a® oa>52,

then the time T taken for a to reach 1 is

1
r da
IIN_K/————T::-—;L—OO’ o

(1 — a2

V
o
©

We conclude that the statement: « ¢ may reach 1 in a finite time » seems to
be inconsistent with eqns (17.1).

To this negative result a positive one can be added through a closer exami-
nations of the properties of those solutions of (17.1), which represent whirls
of large amplitude. To study those solutions the following approximations
are introduced [here as in Sect. 13]: (i) @ and f are approximated respectively
by @ =1 — 9, f = wo(l — &), where o is a constant; 6 and & are quantities
small of the first order; (ii) the radial acceleration is approximated by a f2

The second hypothesis seems to be justified by the first; in a nearly circu-
lar whirl with nearly constant rotational speed the ratio @/af? must be negli-
gible.

Then from the first eqn. (17.1) follows for &

(17.8) ‘ &J0%2 = — (2/B,)(0* - w cos ),

[as in Part II, a prime indicates a derivative towards

e whereas w =
(24/26mw ! mew?

by W
T = wi; also B, -= Tl ]

and from the second eqn. (17.1) follows that: (i) ¢ must be equal to 1/2; (ii) ¢
is related to & through the equation:

(17.4) g = (dw/B,)¥2 sin f .

Taking £ as independent variable in (17.3) one obtains the expression of 6
in terms of j:

0
{1 4 (38%2/2B,)[ — B -+4w(sin f -~ sin §)]1} %/

(17.5) S =

[6 is here the initial value of 8, i.e. the value of § when § = f].
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A number of remarks can be deduced from equns. (17.3), (17.4). First of
all that, if w is sufficiently small (less than 1/4), § decreases steadily to zero
as the time increases [see Fig. 1]. If w is large the value of § may oscillate,
[increasing while f§ is between (4m -- 1) n/2 and (4m -+ 3) =/2 and decreasing

Fig. 1 - Case 1

while § is between (4n -+ 3) #/2 and (4n + 5) x/2)] though the amplitude of
the oscillation tends to zero as the time increases [see Fig. 2]; also when w
is large, our agsumption on the smallness of § becomes invalid, if care is not
taken to choose 6 appropriately small.

Thus we have confirmed Hormes’ results at least for the cases where for-
mula (17.5) gives a reasonable approximation to the solution. In particular
it appears that in all cases where ¢ happens to assume a sufficiently small value
(i. e. the amplitude of the whirl is sufficiently large at a certain time) J tends
asymptotically to zero as ¢ — co; at the same time the whirling speed tends
to w/2.
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It may be observed that in all cases where REDDI and TRUMPLER have con-
cluded (on the strength of their approximate caleulations) with the existence
of a closed path for 0, the value of w was large. For large values of w the field
of validity of formula (17.5) is restricted. It is then necessary to discuss another
asymptotic case for eqns (17.1): the case of very large w and B, [from a mecha-
nical point of view this can be described as the case where lubricant force and
load predominate over the inertia force]. We want to show that then all paths

¥

1

Fig. 2 - Case 10

of O are closed paths; this result is only apparently in contrast with what we
have already said about J: for almost cireular paths the inertia force is predo-
minantly a cenfrifugal force; if we cancel its contribution, small as it may be,
in the dynamic equations, we force arbifrarily the actual conditons in favour
of stability (¢). '

(®) Extensive numerical calculations for this case have been carried out by A.A. MILNE
of the N.E.L., East Kilbride (Scotland).



ot
ot

7 ON BOME DYNAMICAL PROBLEMS ...

Let us put first system (17.1) in a non-dimensional form:

~_a'(l 4 2&-‘“’) )
a" == af'* — 24/2B, : 4w cos

(I —a2)5n

af’ = — 2a'f" + /2B, ol 2B w sen f .
(L — a?p
When w and B, are large it can be reasonably presumed that the solutions
of this system do not behave too differently from the solutions of the sim-
pler system which is obtained by cancelling terms where these two large
parameters do not appear:

1 4+ 2a? w 1 w (1 — a?)Br

a = — CO0S = sinpB.
(1 —a®3?  2,/9B, b B 2 24/%B, a p

The qualitative behaviour of the latter solutions can be easily decided
through a study of the paths of the equations of the first order

da wa(l — a2 cos B
(17.6) 5,2} T - 2a*)[an /2B, — w(l — P sin f]

in the phase-plane (f, «) [see Fig. 3]; actually the correct manifold over which

i

~n/2 /2 A
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the solutions of eqn (17.6) must be studied is the phase cylinder € obtained
by folding the strip =n/2 < p < 3x/2 and joining the straight lines f = 7/2,
f = 3z/2.

The singular points of (17.6) on the phase cylinder © are: (i) Two centres
C;, C, of coordinates

Oy =(x=/2, A); (= (372, — 4),
where 4 is the real solution of the equation

A woo
(1— 4232 /3B,

the paths in the immediate neighbourhood of (), C, are ellipses

(@ — A)* + S

“

wd (1 — 4252 \* const
20/2B,(1 + 249 \" 2] )
and, respectively,
wA{l — A4?) 57

A g (0 7) = const.

(ii) Two saddle points S;, S, of coordinates
S; = (0, 0), 8, = (7, 0);

the paths in the immediate neighbourhood of S;, 8§, are hyperbolae or, excep-
tionally, two straight lines; for istance, around S,

V2 B,
— = g2 == counst.
ﬁa 2w !
and respectively
2w
o = O q == .
’ V2 B, A

All paths of (17.6) on C are closed paths either of the first or second kind
(the latter close around the cylinder); the only exception is the separatrix
a = 0 through the saddle point. '

To prove this, note that for all solutions of (17.6) the following relation of
symmetry holds

alf) = a(mw — f),
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~ because if « = f(f) is a solution of (17.6), so is also @ = f(m — B); furthermore
da/dp =0 for f =m=/2. Hence the field of paths to the right of B = /2 is
the mirror image of the field to the left of § = n/2.

The paths of the second kind are related to closed trajectories of O encir-
cling 2; the closed paths of the first kind instead leave ©Q outside.

18. - The case of long bearings.

There is not much to change in what we have said in Sect. 17 when the
case of long bearings is considered. For istance the dynamic equations (17.1)
must be substituted by the system

ma = maf? — 2&a(l — a2~ + (W/c) cos f
(18.1)
maff = — 2maf+Fa(w — 2p) {1+(a2/2) (1 — a?)12 — (W/e) sin f,

but the equation for 6 =1 — a, which takes the place of (17.3)

/6732 = — (1/B,){ (1/4) + w cos B },
where
G R%y

1 e
V2 mo

allows conclusions parallel to those of Sect. 17.
Also the asymptotic case when load and Inbricant forces prevail over the
inertia forees (case of large w and B,) can be described starting from the equation

da 2wa(l — a?)32 cos f
(18.2) == = — e
dap 24/2Bja —w(2 + a?)(1 —a?) sin B

[instead of (17.6)]. All paths of (18.2) on the phase cylinder are again closed.

19. - Resulis of numerical computations.

To help in bridging the gaps between the asymptotic cases considered in
Sects. 17, 18 quite a few numerical integrations of eqns (17.1) and (18.1) have
been carried out. '

The results of all computations bear out the analytical forecasts of com-
plete instability and indefinite whirling with slowly increasing amplitude of
the journal. It appears also that the rate of increase of the amplitude of oscil-
lation is particularly slow as « becomes larger.
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For the numerical integration of systems (17.1), (18.1) or, rather, of the
equivalent systems of four equations of the first order (in y* — a, y* = dafdt,
y* = f, y* = df/dr), HaymNes predictor-corrector method of ffth order
was used (7):

predictor:
Phpr = Ypoy + (&3) 0@y — /s + 205 _);
modified predictor:
M, = Py, — (112/121)(p} — CF);
corrector:

Cryy = (18)[9% — yi_, - 3dv(m/ |+ 2y —y't )]

modified corrector:

?/Z:+1 = O;i+1+ (9/121)(7724—1 “Oli+1) ;

for ¢ =1, 2,8, 4; k=3, 4, ...

Fig. 4 - Case 7

) R. W. HammiNe, Stable predicior-correcior methods for ordinary differential
equations, J. Assoc. Comput. Mach. 6 (1959), 37-47.
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The starting values v, v, ¥, (¢ =1, 2, 3, 4) were computed by a RUNGE-
Kurra method. The control over errors was based on the differences p; — c;
it was noted that, over some intervals, the numerical integration could pro-
ceed only with very small steps, if satisfactory accuracy was to be achieved.
As 'a consequence the machine programme was set up so that the step-size

Fig, 5 - Case 25

was chosen automatically: halved if p — ¢i was larger than 10-3, doubled if
pi — ¢} was smaller than 5.10~% In the former case the restarting procedure
made use again of the RuxeE-KUurTtA method. Even so the determination of
some trajectories took a relatively long time (around 30’ on the Computer
of the University of Pisa C.E.P., with and addition time of approximately
20 p sec). The tolerance values shown above are average. Some cases actually
required smaller tolerance to avoid progressive worsening of the solution;
also, to guard against complacency, many cases were repeated with different
tolerances.

Examples of solutions are already shown in Figs. 1 and 2; further cases
are in Fig. 4 and 5: note in particular the behaviour of the solution when w
is large (in Fig. 5 only the first and the last of nine orbits are shown),



