R. S. L. SRIVASTAVA and O. P. JONEJA (*)

On the Zeros of Entire Functions. (**)

1. – Let n(r, f) denote the number of zeros of an entire function f(z) for $|z| \le r$ and σ the exponent of convergence of the zeros of f(z). It is known ([1], p. 15) that if f(z) has at least one zero in $|z| \le r$, then

(1.1)
$$\limsup_{r \to \infty} \frac{\log n(r, j)}{\log r} = \sigma.$$

Further, if $M(r, f) = \max_{|z|=r} |f(z)|$ and f(z) has at least one zero in $|z| \le r$, $f(z) \not\equiv 0$, then ([1], p. 17):

(1.2)
$$\liminf_{r\to\infty} \frac{n(r, f)}{\log M(r, f)} \leqslant \liminf_{r\to\infty} \frac{\log n(r, f)}{\log r} = \delta \leqslant \sigma.$$

In analogy with the lower order of entire functions, we shall call δ to be the lower exponent of convergence of the zeros of f(z). In this paper, we derive relations between the exponents of convergence of two or more entire functions and also prove a theorem concerning the distribution of zeros of two entire functions.

2. — Theorem 1. Let $n(r, f_1)$, $n(r, f_2)$, n(r, f) denote respectively the number of zeros of the entire functions $f_1(z)$, $f_2(z)$, f(z) each having at least one zero in $|z| \le r$. Further let δ_1 , δ_2 , δ denote the lower exponents of convergence and σ_1 , σ_2 , σ the exponents of convergence of the zeros of $f_1(z)$, $f_2(z)$, f(z) respectively. Then, if

(2.1)
$$\log n(r, f) \sim \log \{ n(r, f_1) n(r, f_2) \},$$

^(*) Address: Indian Institute of Technology, Kanpur, India.

^(**) Received: 8-II-1962.

for $r \to \infty$, we have

$$(2.2) \delta_1 + \delta_2 \leqslant \delta \leqslant \sigma \leqslant \sigma_1 + \sigma_2.$$

Corollary 1. If $n(r, f_1)$, $n(r, f_2)$, ..., $n(r, f_m)$, n(r, f) denote respectively the number of zeros of the entire functions $f_1(z)$, $f_2(z)$, ..., $f_m(z)$, f(z), each having at least one zero in $|z| \leq r$, and $\delta_1, \delta_2, \ldots, \delta_m$, δ denote the lower exponents of convergence and $\sigma_1, \sigma_2, \ldots, \sigma_m$, σ the exponents of convergence of the zeros of $f_1(z)$, $f_2(z)$, ..., $f_m(z)$, f(z) respectively; then, if

(2.3)
$$\log n(r, f) \sim \log \{ n(r, f_1) n(r, f_2) \dots n(r, f_m) \},$$

we have

$$(2.4) \delta_1 + \delta_2 + \dots + \delta_m \leqslant \delta \leqslant \sigma \leqslant \sigma_1 + \sigma_2 + \dots + \sigma_m.$$

Corollary 2. Let $f_1(z)$, ..., $f_m(z)$, f(z) be entire functions of regular growth, having non-integral orders ϱ_1 , ϱ_2 , ..., ϱ_m , ϱ respectively and (2.3) holds; then

$$\varrho \leqslant \varrho_1 + \varrho_2 + \ldots + \varrho_m .$$

Proof. Using (1.1) for $f_1(z)$, we have, for any $\varepsilon > 0$ and $r > r_0 = r_0(f_1)$,

(2.6)
$$\log n(r, f_1) < (\sigma_1 + \varepsilon/2) \log r;$$

similarly, for the function $f_2(z)$, for any $\varepsilon > 0$ and $r > r_0' = r_0'(f_2)$,

(2.7)
$$\log n(r, f_2) < (\sigma_2 + \varepsilon/2) \log r.$$

Hence, for sufficiently large r, on adding the inequalities (2.6) and (2.7), we get

$$\log \{ n(r, f_1) n(r, f_2) \} < (\sigma_1 + \sigma_2 + \varepsilon) \log r,$$

so that:

(2.8)
$$\limsup_{r\to\infty} \frac{\log \left\{ n(r, f_1) \ n(r, f_2) \right\}}{\log r} \leqslant \sigma_1 + \sigma_2.$$

Therefore, if

$$\log \{ n(r, f_1) \ n(r, f_2) \} \sim \log n(r, f) ,$$

we get, from (2.8),

$$\limsup_{r\to\infty}\frac{\log n(r, f)}{\log r}\leqslant \sigma_1+\sigma_2,$$

or

$$(2.9) \sigma \leqslant \sigma_1 + \sigma_2$$

Next, using (1.2) for $f_1(z)$, we have, for any $\varepsilon > 0$ and $r > r_0'' = r_0''(f_1)$,

$$(2.10) (\delta_1 - \varepsilon/2) \log r < \log n(r, f_1),$$

and similarly for $f_2(z)$, we have, for any $\varepsilon > 0$ and $r > r_0''' = r_0'''(f_2)$,

$$(2.11) \qquad (\delta_2 - \varepsilon/2) \log r < \log n(r, f_2).$$

Hence, for sufficiently large r, we have, from (2.10) and (2.11),

$$\log \left\{ n(r, f_1) \ n(r, f_2) \right\} > (\delta_1 + \delta_2 - \varepsilon) \log r.$$

Therefore

(2.12)
$$\liminf_{r \to \infty} \frac{\log\{n(r, f_1) n(r, f_2)\}}{\log r} \geqslant \delta_1 + \delta_2$$

and since

$$\log\left\{n(r, f_1) \ n(r, f_2)\right\} \sim \log n(r, f) \ .$$

(2.12) yields:

$$\liminf_{r\to\infty}\frac{\log n(r, f)}{\log r}\geqslant \delta_1+\delta_2,$$

 \mathbf{or}

$$(2.13) \delta \geqslant \delta_1 + \delta_2.$$

Combining (2.9) and (2.13), we get

$$\delta_1 + \delta_2 \leqslant \delta \leqslant \sigma \leqslant \sigma_1 + \sigma_2$$
,

since $\delta \leqslant \sigma$ by (1.2). Hence the Theorem 1 is proved.

Corollary 1 follows as an immediate generalization of Theorem 1, while Corollary 2 follows as a direct consequence of Corollary 1 and the fact that for entire functions of regular growth and non-integral orders, the exponents of convergence of their zeros are equal to their orders.

3. – Theorem 2. Let $f(z) = \sum_{0}^{\infty} a_n z^n$, $\varphi(z) = \sum_{0}^{\infty} b_n z^n$ be entire functions other than constants, being real for real z and $\varphi(z)$ having real zeros only. Further let $\sum_{0}^{\infty} c_n z^n$ represent another function $\psi(z)$ such that

$$(3.1) c_n = (a_1 b_n - b_1 a_n) + 2(a_2 b_{n-1} - b_2 a_{n-1}) + \dots + (n+1)(a_{n+1} b_0 - b_{n+1} a_0),$$

where the constants a_{n-p} , b_{n-p} vanish for p > n; then, if $\psi(z)$ has the same sign for every real z, the zeros of f(z) are also real and are separated by the zeros of $\varphi(z)$.

Proof. We have $f(z) = \sum_{n=0}^{\infty} a_n z^n$ which is real for real z.

Therefore, its derivative $f'(z) = \sum_{n=0}^{\infty} (n+1) a_{n+1} z^n$ is also real for real z. Hence

(3.2)
$$f'(z) \varphi(z) = \left\{ \sum_{n=0}^{\infty} (n+1) a_{n+1} z^n \right\} \left\{ \sum_{n=0}^{\infty} b_n z^n \right\}.$$

As $\varphi(z)$, f(z) [and therefore f'(z)] are entire functions, their TAYLOR series converge uniformly and absolutely for every finite |z| = r and so multiplying the two series in (3.2) term by term, we get

(3.3)
$$f'(z) \varphi(z) = \sum_{0}^{\infty} \left[a_1 b_n + 2a_2 b_{n-1} + \dots + (n+1) a_{n+1} b_0 \right] z^n.$$

The series in (3.3) represents an entire function since the product of two entire functions is also an entire function. Similarly, we have

(3.4)
$$\varphi'(z) f(z) = \sum_{0}^{\infty} [b_1 a_n + 2b_2 a_{n-1} + \dots + (n+1)b_{n+1} a_0] z^n,$$

which again represents an entire function.

Now

$$\frac{\mathrm{d}}{\mathrm{d}z}\frac{f(z)}{\varphi(z)} = \frac{f'(z)\;\varphi(z) - \varphi'(z)\,f(z)}{\{\;\varphi(z)\;\}^2} = \frac{\psi(z)}{\{\;\varphi(z)\;\}^2} = P(z)\,,$$

in view of (3.1), (3.3) and (3.4). But P(z) is continuous between the zeros of $\varphi(z)$ which are all real. Also, since $\psi(z)$ is of the same sign for every real z by hypothesis, it follows that $f(z)/\varphi(z)$ must vanish once and only once between the zeros of $\varphi(z)$, i.e., the zeros of f(z) are also real and are separated by the zeros of $\varphi(z)$.

In conclusion, we give an application of Theorem 2 by taking the familiar example of the functions $\sin z$ and $\cos z$. Thus, let

$$f(z) = \sum_{n=0}^{\infty} a_n z^n = \sin z$$
, $\varphi(z) = \sum_{n=0}^{\infty} b_n z^n = \cos z$,

then (for m = 0, 1, 2, ...)

$$a_{2m}=0, \qquad a_{2m+1}=\frac{(-1)^m}{(2m+1)!}, \qquad b_{2m}=\frac{(-1)^m}{(2m)!}, \qquad b_{2m+1}=0.$$

We find that

$$\psi(z) = \sum_{n=0}^{\infty} c_n z^n = 1,$$

where c_n is defined as in (3.1). Thus $\psi(z) > 0$ for every real z and so by Theorem 2 we conclude that zeros of $\sin z$ are separated by the zeros of $\cos z$.

References.

[1] R. P. Boas Jr., Entire functions, Academic Press Inc., New York 1954.