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On the Zeros of Entire Functions. (%)

1. — Let n(r, f) denote the number of zeros of an entire function f(z) for
}#|<Cr-and o the exponent-of convergence-of the zeros-of f(z). It is-known
([1], p- 15) that if f(z) has at least one zero in |z| <7, then

loo n{r
(1.1) im sup W = ¢

Further, if M(r, f) = max|f(z)| and f(z) has at least one zero in |z | <r,
f(2) =0, then ([1], P 17): FI7T
n(r, f) 7

, log n{r
12y - lim inf =TT < lim inf—o—{’r-l—l(ji—«

=0<0.
r—> loc SAT, r—>w ogr :

In analogy with the lower order of entire functions, we shall call § to be the
lower exponent of convergence of the zeros of f(z). In this paper, we derive
relations between the exponents of convergence of two or more entire fun-
ctions and also prove a theorem concerning the distribution of zeros of
two entire functions.

2. — Theorem 1.  Let n(r, fy), n(r, fo), #(r, f) denole respectively the number
of zeros of the entire functions fy(z), fz(z), f(z) each having at least one zero in |2 |<r.
FPurther let 0y, 6, & denote the lower ewponents of convergence and ¢y, 6,y ©
the emponents of convergence of the zeros of fi(2), f.(2), (&) respectively. Then, if

(2.1) log n(r, ) ~log{n(r, f,) n(s f)}
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for r — oo, we have
(2.2) 51+62<6<0‘<0‘1%“0‘2-

Corollary 1.  If nl(r, f1), (7, fo), oy (1, fu), n(r, f) denote respec-
tively the number of zeros of the entire fumctions fl(z fa(2)y -oey (), f(2), each
having at least one zero in [z <7, and Oy, 05y ..., Om, O denote the lower expo-
nents of convergence and oy, Gy, ..., On, 0 the exponents of convergence of the zeros
of f:(z), fal2), ..., ful2), f(2) respectively; then, if

(2.8) log n(r, f) ~log{n(r, f D) 0Ty fa) o 0, o) 1,
we have
2.4y T A, LU, <0< e o e, KL A,

Corollary 2. Let f(2), ..., ful?), f(2) be entive fumctions of reqular
growth, having non-integral orders 0y, sy ...y @n, @ Tespectively and (2.3) holds;
then '

(2.5) ‘ <@+ @+ oot Om .
Proof. TUsing (1.1) for f,(2), we have, for any ¢ >0 and » >,T° == o(f1),
(2.6) log n(r, f1) << (oy + &/2) log r;
similarly, for the function f,(2), for any & >0 and r >7, =9~;(f2),
2.7) log n(r, o) << (0. + €/2) logr.

Hence, for sufficiently large 7, on adding the inequalities (2.8) and (2.7),
we geb

log{ n(r, fo) n(r, ) }< (o1 + 02 + &) log 7,

g0 that:

(2.8) lim sup log { nir, ) n, fo) }

r>eo log

<oy + 0,
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Therefore, if

log{fn(7 fr) (1 fz)} ~log n(r, f),

we get, from (2.8),

1 )
lim sup og n(r, /) < 0y + 0z,
> log
or
(2.9) 0< 0y + 0z

Next, using (1.2) for f,(2), we have, for any ¢ >0 and » > = «r;'(fl) ,

(2.10) (61— &/2) log r << log n(r, f1),
and similarly for f,(z), we have, for any & >0 and r >7, =1,(f,) ,

(2.11) (8, — &/2) log r << log n(r, f) .

Hence, for sufficiently large », we have, from (2.10) and (2.11),

log { a(r, f,) n(r, fo) }> (6 + & — &) log 7.
Therefore
(2.12) Jim int 28470 10{;)7”(’ Ris s o,
and since

IOg{n f1) n(ry f2) } ~log n(r, f).

2.12) yields:
lim inf Iw—"g nir, f

T30 1

/61+627

or

(2.13) 806, + 6.
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Combining (2.9) and (2.13), we get
6 +6,<d<o<o + 0n,

gince 6 <o by (1.2). ¥ence the Theorem 1 is proved.

Corollary 1 follows as an immediate generalization of Theorem 1, while Co-
rollary 2 follows as a direct consequence of Corollary 1 and the faet that for
entire functions of 1e<rul‘u growth and non-integral orders, the exponents of
convergence of their zeros are equal to their orders.

o

3. — Theorem 2. ILet f(&) = Zan 2n, @r) = Zb,lz" be entire functions

0 0 .
other than constants, being real for real ¢ and @(z) having real zeros only. Further

@

ety e, 2n 9'0}5;"68&1@2: another--function p(2)-such-that
0

(3.1) Cp= (¥ by — by @)+ 2(tty by — by py) oo (-F1) (@prg B — Dy @)

where the constants @y, b,_, vawish for p >n; then, if y(2) has the same sign
for every real 2, the zeros of f(z) are also real and are separated by the zeros of P(2).

Proof. We have f(z)= > a,2z* which is real for real z
0

©

Therefore, its derivative f'(2)=> (# -~ 1) @,4, 2" is also real for real z. Hence

iMs °

3.2) P ) ={3 (n+1) any 2" }{ 3 b.2"}.
o Pt
As @(2), f(2) [and therefore f'(2)] are entire functions, their TAYLOR series
converge umfmmly and absolutely for every finite | 2| =1 and so multiplying

the two series in (3.2) term by term, we get .

(3.3) &) ple) =2 [@ ba+-28; byy+ ... + (W+1L) Qyyy by 27

\

The series in (3.3) represents an entire function since the product of two
entire functions is also an entire function. Similarly, we have

(3.4) @'(2) f(2) = 3 [bytn+ 20y Gyt oo 4+ (n4+1)b,y @] 27,
. 0
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which again represents an entire function.
Now

d f2) ') ple) — @' (2) fe) w(2) '
& o) (o) 12 Tom e — L)

in view of (3.1), (3.3) and (3.4). But P(z) is continuous between the zeros of
@(2) which are all real. Also, since w(2) is of the same sign for every real z by
hypothesis, it follows that f(2)/p(2) must vanish once and only once between
the zeros of @(), i.e., the zeros of f(z) are also real and are separated by the
zeros of ¢(z). , '

In conclusion, we give an application of Theorem 2 by taking the familiar
example of the functions sin # and cos z. Thus, let

©

&) = a.2" =sinz,  @@) =23 b,2"=Cco82,
1] 0

then (for m =0,1,2, ...)

I
oemyt?

- (____ l)m bzm

Gpp =0, Aot = @m + ) ’ bemiz = 0.

‘We find that

) = Y e 2n=1,
0

where ¢, is defined as in (3.1). Thus y(z) > 0 for every real z and so by Theorem
2 we conclude that zeros of sin z are separated by the zeros of cos 2.
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