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Dacyar Revate HExNEY (%)

The Structure of Contours for non-degenerate Surfaces

defined on a 2-dimensional Manifold. (¥%)

The main objective of this paper is to show that for a non-degenerate sur-
face defined on a 2-dimensional manifold, there exists a representation for
which almost all contours are arcs, points, or simple closed curves.

The definitions and notation used in this paper are either the same or equi-
valent to those used by RoserT E. FULLERTON [1] and LAMBERTO CESARI[ 2].

Let M be a 2-dimensional manifold and let T be a continuous mapping
from M into m-dimensional Euclidean space E,. Zhe mapping T defines a
Friicurr surface 8. Let [S] denote the set of points in E, occupied by the sur-
face. On [8] define a real valued function f with upper and lower bounds t,
and #,, respectively. The contour C(t) associated with f, 7, ¢ is the set of all
points p € M such that f[T(p)] =1, for t€[t;, &.]; i.e.

C(1) —_—{p: P e M and flT(p)] ==t for t=[t;, ] }
Let D~(t) ={p: pe M and [[T(p)]<t for te[ty, &] }.
Let DH(z) :{p: pe M and f[T(p)] >t for t€[t, ] }

Let «{t) be a component of D-(t) and let » be a component of «*(¢) — w(t),
where by * we denote the boundary of the set. The set 4 = A(e, 3) is the set

(*) Indirizzo: Department of Mathematics, University of Maryland, College Park,
Maryland, U.S.A..
(**) This is a generalization of RoBErRT E. FULLERTON’s paper: The Struciure of
Contours of & Fréchet Surface. I wish to express my sincere thanks to Dr. Fur-
- LERTON for his kind and devoted advice.
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of points of A/ which are in « plus those which are separated from y by other
components of o*(¢) — «(t) plus those components of o*({) — «(?) which separ-
ate points of @ from .

The contours may be in general of a rather complex topological nature,
and it is desirable in some cases to substitute for the contour a somewhat sim-
pler smoothed contour whose image is less than (or equal) to the original
contour in lenght and has simpler properties. R. E. FurLerTON discusses 2
smoothing methods in [1]. Since the first of his method will be applied in the
proof of this theorem, it will be described here briefly:

Denote by I"'c M the set of all maximal continua of constancy for 7' in I
and denote by ¢’ ¢ I' the set of all such continua which intersect y. Consider
the set {u; }u’y, of all prime ends of 4 corresponding to points on y. This set
can be ordered [2]. For w,<<w,e{w},., let 2, w’ be such that w, <w' <
< w" <w,. Let B, denote the points of y associated with a prime end w. As-
sume that X, n I, 5= 0. For any end w"” with w'<w" < w" let o’(2', w") be

«

the subset of ¢’ obtained by deleting from ¢’ all elements which intersect any
B, for w' << w<<w". Let gylw,, w,) be the intersection of all sets of the form
o'(w'y w') for all w', w" with w, <w' <" <w,. This set will be the smoothed
contour between w, and w, in ¢'. It was shown in [3] that in the hyperspace
topology of I, o,(w,, w.) is an arc.

Let T : M — E, be a continuous mapping defining a non-degenerate sur-
face, then there exists a mapping 7 which is light and FrECHET equivalent
to T. Assume that T is light and let C(t) be a contour defined by 7, f, ¢ in M
with image of finite lenght in the sense of CEsArI. This implies that all the sets
B, are continua of constancy and hence points in this case. Also each E, is
accessible from o« and each prime end is an end. We can now prove the

Theorem: Let 8 = (T, M) be a FRECHET surface defined by a light
mapping T on a 2-dimensional manifold I into n-dinensional Buclidean space
B, . Let f :[S] = Reals be continuous. Let [y], be the set of all components of
contours corresponding to f in Q and whose images ave of finite length.

Then all components, with the exception of a countable number of components,
will either be a point, a simple are, or a simple closed curve.

Proof:
Let O@)c M be a contour satisfying the hypothesis.
Let o be a component of D-(¢).
Let ¥ be a component of (a* — ).

Assume that p €y is the endpoint of two distinet ends #;, n, where 5, 54 7,
from A{e, ?) to y. Let by, b, be defining ares for 1, #, respectively such that
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by —{p}edAle, ¥); b, —{p}eAle, y) and [b, — p]n [b. — p] = p’, where p’,
is a point of A(e, y) 'I_‘hen by b, is a simple closed curve in M which lies in
Ao, v) and fny = -{ P } . There exist ends between 1, and #,, in since #, 5= 7,
and there are points of y interior to f. Suppose 7, < 7, . Several cases arise.

Case I (See Figure I): There e\ist ends 7, 5, with ;< <7, <7,
ending on y with w,, 55w, , cu,], % P, o, ¥ p such that defining arcs exist

2

for #,, u, which tO(rethel form a crosscut ¢ f01 Afe, y) and such that

(i) p — (p) Hes in the component of A(ex, v) — ¢ which contains as
_ boundary points the points o, €y, 7<n<n,.
(ii)  There exists no end 7, between 7, and #, for which W, == w,, and
1 2
no end 7, between 7, and 7, with 7, = 7, .
Let M be a 2- manifold. Consider a segment of ends and prime ends of 4
ending on y as defined by R. B. FULLERTON [2].

For every point p € M there exists an open subset N c M Whlch is homeo-
morphic to an open disc in the plane whose center is the counterimage of p.
If p is a boundary point of A, then ¥, is homeomorphic to an open half
dise in the plane plus is bounding diameter with p the image of the mid-point
of the diameter. Neighborhoods of the above type, in accordance with R. E.
Furrerrow, will be called coordinate neighborhoods since, it is possible to in-

-troduce local co-ordinate systems at each point of 2.
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Since M is compact, M can be covered by a finite number of these- neigh-
borhoods. Let U be one of these connected neighborhoods such that p e U c D~®
with the two ends #, and 7, ending on y at p. We can order the ends on y in U
by using a segment of ends, FULLERTON [2]. Since #, < 7, there exists an end
7o With 7y <7, << 7. . b

Following R. E. FurLrrron’s proof it can be shown that all contours but
a countable number of them are locally smooth i.e. by using the first smoo-
thing method described by R. B. FurLLerRTON [2] the smoothed portion of
v between 77, and 7, is an arcin the hyperspace topology. Since the hyperspace
topology coincides with the ordinary topology in @ the smoothed portion of
v yields also an are in ). Smoothing y between 7, and 7, and between 7, and 7,
yields altogether three arcs with not more but one point in common which is
the endpoint of each arc. This configuration was called « triod » by R. L. MOORE
and by one of his theorems, there exist at most countably many distinet triods
in the plane

O ase I’ (See Flgule I’): is ’che same as Case I except that the order
of the ends is reversed, i.e. 7, <<, <7, <17, -

The same arguments can be applied in this case after modifiying the order
relations accordingly.

Fig. T’

Case II (See Figure IT): Let #, be the first end on y. There exists an end
7y < 77, With w,y #p and a cross cut ¢ from @Q* to w,, which contains a

2 . 2
defining arc for 17; such that f—(p) lies in the component of A(e, y)—C which
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includes among its boundary points the points w, €y for which n<<n<n,.

For manifolds without boundary there exists no Case II. Let M be a mani-
fold with rectifiable boundary.

Let M be covered by coordinate neighborhoods. Since M is compact M
can be covered by a finite number of neighborhoods.

Let 7, be an end such that #, <7, <7, . Smoothing between the ends 1,
and 7, and between 7, and 77; on y yields as in Case I two ares 7,, 7.. The are
7, has initial point w, . The arc 7, has initial point w,, #* w, and each arc has
terminal point p. 2

Fig. IL

If 7, n 7, contains a point other than p, then 7, n 7. contains a triod and a
set of these components which contains triods is at most countable.

If 7, n 7, = p the avcs intersect only on @* A configuration consisting of
two arcs with this property will be called
,’\ / ' | in accordance with R: E. FULLERTON &
a : i-—'Q' « V set ». Since all contour components
|
i

[ / are distinet, no two such sets can have
points in common. To show now that the-
re are only countably many V setsin ¢.

Assume that V n @* contains points other than p. There two possibilities.
Either V contains a V-set V' such that V' n @* is a single point or a subarc of V'
lies in @*, The boundary of § contains only countably many of these distinct
subarcs and therefore only eountably two possibilities many contour compo-
nents can contain V-sets of this type. Bach of the remaining V-sets can be
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assumed to intersect the boundary of ¢ in but one point. We will show that
there exists only a countable number of this type.

Let ¢ be a point of @* Lebt N, be an open half-dise neighborhood of ¢ and
let d, be the bounding diameter with ¢ interior to d,. If I is the boundary of
I then I can be covered by a finite number of half-disc coordinate neighbor-
hoods N. Let d be the union of the bounding diameters of N. Parallel to d
consgider a sequence of converging line segments {d,,} that converge to d.

Then if for the U set V, V and @* have & single point in common which
lies on d, one of the segments d, must intersect both arcs v, and 7, of V. The
union 7; U 7, U d, will bound an open set G(V) c Q. Also, since all the V sets
are distinct if V, %= V, then G(V,) n G(V,) == 0. Since there can be only coun-
tably many disjoint open sets in the plane, only countably many V7 sets in
dise D can have the vertex point on d.

Case ITT (See Figure III): As in Case I there exist two distinct ends 7, 7,
with 9, <9, < 55, < 7, satisfying that. for every. choice of 7, %, there exists
an end 7, 7, <<%, <y, 71, 7, satistying that § — p lies in the component of

Fig. IIL.

Az, y) — € which contains as boundary points the points w, €Y, 'Where 7 <
<<, bub w, =w, or an end n,, 17, <7, <17,; 1y, 7, satisfying (i) and

1 2
’LUUI/ === wn/ .

2 1
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First we will consider a 2-manifold M without boundary. For example we
could think of M as a torus and @ as a band which goes around the torus.

Assume first that each point of y is the endpoint of exactly one end. Consider
a segment of ends and prime ends of 4 ending on y as defined by R. E. Fvr-
LERTOXN.

Since M is a two dimensional manifold then for every point p of M there
exists an open subset N, c M which is homeomorphic to an open disc in the
plane whose center is the counterimage of P. (The &, are called coordinate
neighborhoods.) Also M is compact hence M can be covered by a finite number
of these neighborhoods.

Let y be covered by a set of coordinate neighborhoods in M. Let N be one
of these neighborhoods. Then (N —y) n 4 will consist of components (possi-
bly infinitely many) each having points of y on its boundary.

It will now be shown that p cannot « terminate » in any neighborhood. The
following cases may occur: :

(1) y is contained entirely in one neighborhood N. Then this reduces
to the planar case which has already been discussed by R. K. FULLERTON.
Thus in the following section we consider only the significant case in which
y ¢ N

(2) Assume now that y has been chosen and that y does not lie completely
in any coordinate neighborhood. For each point p €y let &, be a coordinate
neighborhood containing p. Since y is a closed subset of I, is compact and
there exists a finite family { N’"} (K =1, 2, ...), chosen from the family
{N,} which covers y.

We will show that there is no end # with endpoint p on y such that # is
the last end on the segment of y containing p. Now we can select a neighbor-
hood N,, N,c N such that p is interior to N, and
N, does not contain any other component of y but
the one which contains p.

Also p is not a limit point of a sequence of
disjoint components of ¥ n . Since otherwise let
peN°® and €, (i=1, 2, ...) denote the disjoint com-
ponents of N ny. Then €, n N* =0 for all 7. Let
2,e(C;nAN), all 4.

Then {X i} is an infinite bounded sequence
which lies in the closed set y and hence by the
BorzANO-WEIERSTRASS theorem a subsequence of {X i} converges to X . By
an argument involving the ZORETTI theorem, it can be shown that X' lies in
the same component €, which contains p.

Also @' % p since all points », (4 =1, 2, ...) are boundary points of N im-
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plies that #' is a boundary point. But p is interior to N. Hence z' = p and O,
represents a non-degenerate limiting continuum.

According to CESARI [2] the limiting continunm €, forms a continuum of
constancy. )

This yields the desired contradiction since by hypothesis T is a light funec-
tion and all continua of constancy must then be points. Hence if p is interior
to N then p is not a limit point of disjoint components of y n V.

A similar argument can beused when p is a boundary point of N, by
selecting another neighborhood N, with p interior to N.

Since p is not a limit point of disjoint components of N n v, we can find
a neighborhood N, with p € ¥, which does not include any other component
of yn V. .

Let f§ be the arc determining » in N, . Now 4 is an admissible end and every
neighborhood of # must contain points of A. Therefore N, nf n A 5= 0.

Also p is a boundary point of 4. Consider a disc D with boundary ¢ around

p in N,. Let I be a component of D°n A with p as boundary point. The or-
dering of ends in K can be chosen to be compatible with the ordering of ends
in &v,.

It has been proven by Roserr B. Furrerron [1] that K is a simple con-
nected region.

Now p is interior to D and hence interior to some segment of ends of K.
But if we assume that 4 is the last end, then all ends following % in K have
to end on C.

But C is bounded away from p, since p is interior to O, which yields the
desired contradiction.

\ We can show that at most two ends end at p. For assume otherwise i.e.
that there arve three ends #,, 7., and 7, ending on p with p = w, = W, =W,
We can choose the three ends such that <7< . Then let Sl, Sz, and Sa
be the ares defining the end 7,
7., 2nd 7, respectively. Again let N,
be a coordinate neighborhood of p.
Ends of 4 ending at p can be defined

in ¥, n 4.

We can choose N, such that the
three arc are entirely in the inte-
rior of N,- N, can be chosen such
that part of the boundary will have
to lie between each two ares since
otherwise the two arcs would be equivalent i.e. for every N, there would
exist a subarc 8’ with 8, 8" = (w), 8, & == (') and the open JORDAN region
whose boundary is S; + 8 4 8, is contained in N,. Therefore the simple
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JorDAN region which is bounded by §,, S, and a portion of boundary of &, can
be disconnected by . The same statement applies to the region bounded
by S., S; and a portion of N, as well as to the region which is bounded
by Si, 8; and N, . Since 8y, S., and S; are three aves which have only one point
in common, namely p, this configuration contains a triod and according to
R. L. Moor® [5] there are but a countable number of them. Ergo the case
where more than two ends end on p can be discarded in our considerations.

We know now that there is at least one point p on ¢ which is the endpoint
of two ends. To show further that every point of p, with two possible excep-
tions, is the endpoint of two ends. Let 7, #. be the two ends with w, ==, = p
with #, <<7.. Let N, a coordinate neighborhood of p. Ends of 4 ending on
p to be defined as previously. This can be done for any point p of y. Since y
is a closed subset of M, o is compact and there exists a finite family {Ny}
(g =1, 2, ..., n) which is contained in the collection {N,)} covering y. As-
sume that there are two ends 77;, 7, in N, with 7, < 7, < 77;< 7. for which

: A ; ; s

there exist no ends 7,, 7, With w, =, and w, = w, . (See figure.) Let 7,
1 1 2 2

be an end with 5, << 7, << 7. . Since 1, << 7. and the order is cyclic there exists

such an end.

Asit was done in Case I, smoothing og y between 77; and 5,3 17, and 7.5 7, and
yields 3 ares with but one point in common. As before this gives rise to a triod
and such cases can occur
at most countably many
times. After deleting the-
se cases the only other
case that one has left to
congsider is the one where
there exists at most one
end 7' between #; and 1,
where 7, < 7, < 71, for
which there is no end #,
with w, =w, . Since a
corresponding situation exists for the interval , << <C 7, one then can assume
that all ends occur in distinet pairs with two possible exceptins. Now consi-
der the following. '

Assume that in the interval 7, <<% < 7, the ends occur in distinct pairs
with one exception. We will say that two ends belong to the same pair if they
have the same endpoint on .

Let A be the collection of all ends on «one side of y» and let 4’ be the
set of all ends on « the other side of y »; i.e. if # and »’ are a pair of ends with
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w, =w,, on y and if n<#n' then let # be in 4 and let " be in 4’. Similarly
for ends in n, <% <#,.

Again let ¥ be covered by a finite number of co-ordinate neighborhoods.
Consider the class A and A’ for the interval n <n <<n,. Every end of the in-
terval with one exception is contained in 4 or 4’ and every end of 4 is less
than every end of 4'. Therefore 4 and A’ define a prime end, let us denote
this end by #,. Also 7, does not belong to any pair since if %,, 7, Were a pair with
7o < 7, then there would be an end 7* between 5, and 7, . But this yeilds a con-
tradiction since then either #* is in A but * >, or otherwise #*e A’ and
n* <77, which contradicts the fact that 7, is defined by 4 and A’. Therefore 7,
does not belong to any pair of ends in the interval T <o <7z - Also in the
interval 7, <7 < 7, there exists a corresponding end 7, which is unique. Since
these two intervals n, <7 <, and %, <5 <4, include all ends ending on points
of y. Consider the endpoints of ends on y in the interval [7,, 7,]. These include
all the points of y and each point of y is the endpoint of exactly one end ter-
minating on-y. Therefore portion-of 7y between 7, and 7, is smooth-and is an
arc. ;
Hence it has been shown in Case ITI that y is an arc or contains a triod
ora a V set. Omitting all components y of the later variety, all but a countable
family of the components are arcs.

In all other cases but those considered, the contour y is smooth between
any two of its points. For any contour y with first and last ends terminating on
it, the V set is an arc. Given any two points of v,y consists of 2 arcs with but

2 points in common and is therefore a simple closed curve in 3. Hence all
contours y except possibly a countable number are arcs, points or simple closed
curves.
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