KRISHAN K. GOROWARA (*)

A Problem

in Rectilinear Congruences Using Tensor Calculus. (**)

1. – Let the co-ordinates of a point P on the surface of reference S of a rectilinear congruence be given by $x^i = x^i(u^1, u^2)$ (i = 1, 2, 3) and the direction cosines of the ray of the congruence through x^i by $\lambda^i = \lambda^i(u^i, u^i)$ (i = 1, 2, 3). Since in general the rays of the congruence are not normal to S, we have

$$\lambda^i = p^\alpha x^i, \quad \alpha + qX^i$$

and

$$\lambda^i \lambda^i = 1,$$

where: p^{α} are the contravariant components of a vector in the surface at P; $x^{i}_{,\alpha}$ ($\alpha=1,\ 2$) are the direction numbers and denote covariant differentiation of x^{i} with regard to u^{α} based on the first fundamental tensor

$$g_{\alpha\beta} = x^i_{,\alpha} x^i_{,\beta}$$

of the surface S; q is a positive scalar function such that if θ is the angle between the normal to the surface at a point P and the line of the congruence through P, then

$$(1.4) q = \lambda^i X^i = \cos \theta$$

^(*) Address: Department of Mathematics, Montana State University, Missoula, Montana, U.S.A..

^(**) Received on 9-V-63.

and

$$(1.5) p^{\alpha} p^{\beta} g_{\alpha\beta} = \sin^2 \theta.$$

In what follows Latin indices take the values 1, 2, 3, and Greek indices the values 1, 2.

2. – Consider a curve C: $x^i = x^i(s)$ on a surface S. Let α^i , β^i , γ^i be the direction cosines of the tangent, principal normal and binormal at a point $P(x^i)$ of the curve through which a ray of the congruence passes. Let σ be the angle between λ^i and α^i , i.e. between λ^i and dx^i/ds , φ the angle between λ^i and β^i and ψ the angle between λ^i and γ^i . Then it is clear that we can write

(2.1)
$$\lambda^{i} = \cos \sigma \cdot \alpha^{i} + \cos \varphi \cdot \beta^{i} + \cos \psi \cdot \gamma^{i}$$

or

$$\gamma^{i} = \sec \psi \cdot \left[\lambda^{i} - \cos \sigma \cdot \frac{\mathrm{d}x^{i}}{\mathrm{d}s} - \cos \varphi \cdot \beta^{i} \right] .$$

By Frener's formulae we have (K being the curvature)

$$K = eta^i rac{\mathrm{d}lpha^i}{\mathrm{d}s} = \gamma^i imes lpha^i rac{\mathrm{d}lpha^i}{\mathrm{d}s} \,,$$

$$K = \sec \psi \cdot \left[\lambda^i - \cos \sigma \cdot \frac{\mathrm{d} x^i}{\mathrm{d} s} - \cos \varphi \cdot \beta^i - \frac{\mathrm{d} x^i}{\mathrm{d} s} - \frac{\mathrm{d}^2 x^i}{\mathrm{d} s^2} \right] \,,$$

 \mathbf{or}

(2.2a)
$$K = \sec \psi \cdot \left[\lambda^i \quad \frac{\mathrm{d}x^i}{\mathrm{d}s} \quad \frac{\mathrm{d}^2x^i}{\mathrm{d}s^2} \right],$$

on dropping out vanishing determinants since $K\beta^i = \frac{\mathrm{d}\alpha^i}{\mathrm{d}s} = \frac{\mathrm{d}^2x^i}{\mathrm{d}s^2}$. Again

(2.3)
$$\frac{\mathrm{d}^2 x^i}{\mathrm{d} s^2} = \varrho^\delta x^i_{,\delta} + K_n X^i,$$

where K_n is the normal curvature of the suface in the directions of the curve C

[3]

and ρ^{α} is the curvature vector of the curve C. Therefore

$$\begin{split} K &= \sec \psi \left[\lambda^i \quad \frac{\mathrm{d} x^i}{\mathrm{d} s} \quad \varrho^\delta \, x^i_{,\delta} \, + K_n \, X^i \right] = \\ &= \sec \psi \left[\left[\lambda^i \quad \frac{\mathrm{d} x^i}{\mathrm{d} s} \quad \varrho^\delta \, x^i_{,\delta} \right] + K_n \left[\lambda^i \quad \frac{\mathrm{d} x^i}{\mathrm{d} s} \quad X^i \right] \right] = \\ &= \sec \psi \left[(p^\eta \, x^i_{,\eta} + q \, X^i \quad x^i_{,\mu} \quad x^i_{,\delta}) \, \varrho^\delta \, u'^\mu + K_n (p^\eta \, x^i_{,\eta} + q \, X^i \quad x^i_{,\mu} \quad X^i) \, u'^\mu \right] = \end{split}$$

 $= \sec \psi \left[q e_{u\delta} \varrho^{\delta} u'^{\mu} + K_n p^{\eta} e_{n\mu} u'^{\mu} \right],$

or

(2.4)
$$K = \sec \psi \ e_{\mu\delta} [q \ \varrho^{\delta} - K_n \ p^{\delta}] \ u^{\prime\mu},$$

where

$$e_{\mu\delta} = (X^i \quad x^i_{,\mu} \quad x^i_{,\delta})$$
.

Particular Cases:

(i) If the ray of the congruence lies in the rectifying plane, we get

$$K = \operatorname{cosec} \sigma \cdot e_{u\delta}(q \varrho^{\delta} - K_n p^{\delta}) u'^{\mu},$$

which is the same as obtained by MISHRA [1].

(ii) If the ray of the congruence becomes normal to the surface (i.e. the vector $p^{\delta} = 0$), then

$$K = \sec \psi \ e_{u\delta} \ \varrho^{\delta} \ u'^{\mu}.$$

(iii) If the ray of the congruence becomes tangent to the surface (i.e. q=0), then

$$K = K_n \sec \psi \ e_{\delta\mu} \ p^{\delta} \ u'^{\mu}.$$

If K_u is the union curvature of the curve C [3], then

$$(2.5) K_{\mathbf{u}} = e_{\delta\mu} \left(K_n \ l^{\delta} - \varrho^{\delta} \right) \ u^{\prime\mu},$$

where $l^{\delta} = p^{\delta}/q$. Then using (2.4) in (2.5), we hav

$$K = \cos \theta \cdot \sec \psi \cdot K_u$$
.

Another expression for curvature can be obtained as follows: $K\beta^i=\mathrm{d}\alpha^i/\mathrm{d}s$. Using (2.1) and (2.3) this equation becomes

(2.6)
$$p^{\delta} x_{,\delta}^{i} + K_{n} X^{i} = K \beta^{i} = K \gamma^{i} \times \alpha^{i} =$$

$$= K \sec \psi \left[\lambda^{i} - \cos \sigma \cdot \frac{\mathrm{d}x^{i}}{\mathrm{d}s} - \cos \varphi \cdot \beta^{i} \right] \times \frac{\mathrm{d}x^{i}}{\mathrm{d}s} =$$

$$= K \sec \psi \left[\lambda^{i} \times \frac{\mathrm{d}x^{i}}{\mathrm{d}s} + \cos \varphi \cdot \alpha^{i} \times \beta^{i} \right].$$

Multipliying (2.6) with X^i and summing with respect to i:

$$\begin{split} K_n &= K \sec \psi \left[\left[X^i \quad \lambda^i \quad \frac{\mathrm{d} x^i}{\mathrm{d} s} \right] + \frac{\cos \varphi}{K} \left[X^i \quad \frac{\mathrm{d} x^i}{\mathrm{d} x} \quad \varrho^\delta \ x^i,_\delta + K_n \ X^i \right] \right] = \\ &= \sec \psi \left[K(X^i \quad p^\delta x^i,_\delta + q \ X^i \quad x^i,_\beta \ u'^\beta) + \cos \varphi \left(X^i \quad x^i,_\beta \ u'^\beta \quad \varrho^\delta x^i,_\delta + \right. \\ &\quad \left. + K_n \ X^i) \right] = \sec \psi \left[K \ e_{\delta\beta} \ p^\delta \ u'^\beta + \cos \varphi \cdot e_{\beta\delta} \ \varrho^\delta \ u'^\beta \right]. \end{split}$$

Hence

(2.7)
$$K_n = \sec \psi \ e_{\delta\beta}(K \ p^{\delta} - \cos \varphi \cdot \varrho^{\delta}) \ u'^{\beta}.$$

If the line of the congruence lies in the rectifying plane, we have

(2.8)
$$K_n = K \operatorname{cosec} \sigma \cdot e_{\delta \beta} p^{\delta} u'^{\beta},$$

which is the same as obtained by MISHRA [1]. Multiplying the equation (2.6) by λ^i and summing up with respect to i,

we obtain

$$\begin{split} p^{\alpha} \, \varrho_{\alpha} + q \, K_n &= K \sec \psi \cdot \cos \varphi \cdot (\lambda^i \quad \alpha^i \quad \beta^i) = \\ &= \sec \psi \cdot \cos \varphi \cdot (p^{\alpha} \, x^i_{,\alpha} + q \, x^i \quad x^i_{,\beta} \, u'^{\beta} \quad \varrho^{\delta} \, x^i_{,\delta} + K_n \, X^i) = \\ &= \sec \psi \cdot \cos \varphi \cdot e_{\alpha\beta} \left[K_n \, p^{\alpha} - q \, \varrho^{\alpha} \right] u'^{\beta}. \end{split}$$

Hence the equation

$$(2.9) p^{\alpha} \varrho_{\alpha} + q K_{n} = \sec \psi \cdot \cos \varphi \cdot e_{\alpha\beta} \left[K_{n} p^{\alpha} - q \varrho^{\alpha} \right] u^{\prime\beta}$$

can be taken as the equation of the curve C on the surface S.

Particular cases of (2.9).

(i) If the line of the congruence lies in the osculating plane, equation (2.9) reduces to

$$e_{\alpha\beta} \left[K_n p^{\alpha} - q \rho^{\alpha} \right] u^{\beta} = 0,$$

which is the same as the equation of union curves as obtained by Springer [3].

(ii) If the line of the congruence lies in the rectifying plane, then equation (2.9) reduces to

$$p^{\alpha} \varrho_{\alpha} + q K_n = 0,$$

which is the same as obtained by MISHRA [1].

3. - We have as before

$$\gamma^{i} = \sec \psi \cdot \left[\lambda^{i} - \cos \sigma \cdot \frac{\mathrm{d}x^{i}}{\mathrm{d}s} - \cos \varphi \cdot \beta^{i} \, \right].$$

Therefore

$$\begin{split} \frac{\mathrm{d} \gamma^i}{\mathrm{d} s} &= \sec \psi \cdot \tan \psi \cdot \frac{\mathrm{d} \psi}{\mathrm{d} s} \cdot \left[\, \lambda^i - \, \cos \sigma \cdot \frac{\mathrm{d} x^i}{\mathrm{d} s} - \, \cos \phi \cdot \, \beta^i \, \right] \, + \, \sec \psi \cdot \left[\frac{\mathrm{d} \lambda^i}{\mathrm{d} s} \right. \\ & \left. - \, \cos \sigma \cdot \frac{\mathrm{d}^2 x^i}{\mathrm{d} s^2} + \, \sin \sigma \cdot \frac{\mathrm{d} \sigma}{\mathrm{d} s} \, \frac{\mathrm{d} \, v}{\mathrm{d} s} - \, \cos \phi \cdot \frac{\mathrm{d} \beta^i}{\mathrm{d} s} + \, \sin \phi \cdot \frac{\mathrm{d} \phi}{\mathrm{d} s} \cdot \beta^i \, \right]. \end{split}$$

By FRENET's formulae we have

$$\tau = \beta^{i} \cdot \frac{\mathrm{d}\gamma^{i}}{\mathrm{d}s} =$$

$$= \beta^{i} \cdot \left\{ \sec \psi \cdot \tan \psi \cdot \frac{\mathrm{d}\psi}{\mathrm{d}s} \left[\lambda^{i} - \cos \sigma \cdot \frac{\mathrm{d}x^{i}}{\mathrm{d}s} - \cos \varphi \cdot \beta^{i} \right] + \right.$$

$$+ \sec \psi \cdot \left[\frac{\mathrm{d}\lambda^{i}}{\mathrm{d}s} - \cos \sigma \cdot \frac{\mathrm{d}^{2}x^{i}}{\mathrm{d}s^{2}} + \sin \sigma \cdot \frac{\mathrm{d}\sigma}{\mathrm{d}s} \cdot \frac{\mathrm{d}x^{i}}{\mathrm{d}s} - \cos \varphi \cdot \frac{\mathrm{d}\beta^{i}}{\mathrm{d}s} + \sin \varphi \cdot \frac{\mathrm{d}\varphi}{\mathrm{d}s} \cdot \beta^{i} \right] \right\} =$$

$$= \gamma^{i} \times \alpha^{i} \cdot \left\{ \sec \psi \cdot \tan \psi \cdot \frac{\mathrm{d}\psi}{\mathrm{d}s} \cdot (\lambda^{i} - \cos \varphi \cdot \beta^{i}) + \right.$$

$$+ \sec \psi \cdot \left[\frac{\mathrm{d}\lambda^{i}}{\mathrm{d}s} - \cos \sigma \cdot \frac{\mathrm{d}^{2}x^{i}}{\mathrm{d}s^{2}} + \sin \varphi \cdot \frac{\mathrm{d}\varphi}{\mathrm{d}s} \cdot \beta^{i} \right] \right\}.$$

Since
$$\beta^i \, rac{\mathrm{d} x^i}{\mathrm{d} s} = 0$$
 , $\beta^i \, rac{\mathrm{d} \beta^i}{\mathrm{d} s} = 0$. Therefore

$$\begin{split} \tau &= \left[\sec \psi \cdot \left[\lambda^i - \cos \sigma \cdot \frac{\mathrm{d} x^i}{\mathrm{d} s} - \cos \varphi \cdot \beta^i\right] \quad \frac{\mathrm{d} x^i}{\mathrm{d} s} \right. \\ &+ \sec \psi \cdot \tan \psi \cdot \frac{\mathrm{d} \psi}{\mathrm{d} s} \cdot (\lambda^i - \cos \varphi \cdot \beta^i) \, + \\ &+ \sec \psi \cdot \left[\frac{\mathrm{d} \lambda^i}{\mathrm{d} s} - \cos \sigma \cdot \frac{\mathrm{d}^2 x^i}{\mathrm{d} s^2} + \sin \varphi \cdot \frac{\mathrm{d} \varphi}{\mathrm{d} s} \, \beta^i\right] \right] \, . \end{split}$$

On dropping out vanishing determinants, we have

$$egin{aligned} & au = \sec^2 \psi \cdot \left[\left[\lambda^i \; rac{\mathrm{d} x^i}{\mathrm{d} s} \; rac{\mathrm{d} \lambda^i}{\mathrm{d} s}
ight] - \cos \, \sigma \cdot \left[\lambda^i \; rac{\mathrm{d} x^i}{\mathrm{d} s} \; rac{\mathrm{d}^2 x^i}{\mathrm{d} s^2}
ight] + \ & + \sin \phi \cdot rac{\mathrm{d} \varphi}{\mathrm{d} s} \left[\lambda^i \; rac{\mathrm{d} x^i}{\mathrm{d} s} \; eta^i
ight] - \cos \, \varphi \cdot \left[eta^i \; rac{\mathrm{d} x^i}{\mathrm{d} s} \; rac{\mathrm{d} \lambda^i}{\mathrm{d} s}
ight]
ight]. \end{aligned}$$

Now, using (2.2a),

$$\begin{split} \left[\lambda^i \quad \frac{\mathrm{d} x^i}{\mathrm{d} s} \quad \beta^i \right] &= \frac{1}{K} \left[\lambda^i \quad \frac{\mathrm{d} x^i}{\mathrm{d} s} \quad \frac{\mathrm{d}^2 x^i}{\mathrm{d} s^2} \right] = \cos \psi \;, \\ \\ \left[\lambda^i \quad \frac{\mathrm{d} x^i}{\mathrm{d} s} \quad \frac{\mathrm{d} \lambda^i}{\mathrm{d} s} \right] &= e_{\delta r} \left(p^\delta \; v \; \varphi - q \; \mu_\varphi^\delta \right) u'^\nu \; u'^\varphi \;, \\ \\ \left[\beta^i \quad \frac{\mathrm{d} x^i}{\mathrm{d} s} \quad \frac{\mathrm{d} \lambda^i}{\mathrm{d} s} \right] &= \frac{1}{K} \, e_{\delta r} \left(\varrho^\delta \; v_\varphi - K_n \; \mu_\varphi^\delta \right) u'^\nu \; u'^\varphi \;, \end{split}$$

(cfr. [2]). Therefore we have

$$\begin{split} \tau &= \sec^2 \psi \cdot \left[e_{\delta \nu} \cdot (p^\delta \, v_\varphi - q \, \mu_\varphi^\delta) \, \, u'^\nu \cdot u'^\varphi - \cos \psi \, \cdot \left[\cos \sigma - \sin \varphi \cdot \frac{\mathrm{d} \varphi}{\mathrm{d} s} \right] - \right. \\ &\left. - \frac{\cos \, \varphi}{K} \cdot e_{\delta \nu} (\varrho^\delta v_\varphi - K_{\mathbf{n}} \, \mu_\varphi^\delta) \, \cdot u'^\nu . u'^\varphi \right] \, . \end{split}$$

References.

- [1] R. S. MISHRA, A Problem in Rectilinear Congruences using Tensor Calculus, Bull. Calcutta Math. Soc. 42 (1950), 118-122.
- [2] R. Bahari and R. S. Mishra, Some Formulae in Rectilinear Congruences, Proc. Nat. Inst. Sci. India 15 (1949), 85-92.
- [3] C. E. Springer, Union Curves and Union Curvature, Bull. Amer. Math. Soc. 51 (1945), 686-691.
- [4] K. K. GOROWARA, Tesis on Differential Geometry of Ruled Surfaces and Rectilinear Congruences, The University of Delhi, Delhi, India (1957).

•