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On Some Dynamical Problems

Arising in the Theory of Lubrication.

PART IL (%)

11. - Introduction.

In an earlier paper of the same title (1) some results were presented of
- @ research on the dynamic behaviour of a rigid rotor housed in a lubricated
bearing; we continue here the report and for ease of reference we do not in-
terrupt the numbering of sections.

(*) Address: Maths. Dept., Nelson Research Laboratories, Stafford, England.

(**) Received March 26, 1962.

(*) Riv. Mat. Univ. Parma (2) 1 (1960), 1-20. Some annoying errors crept in during
the editing of that paper. The first at page 6: the second formula (3.8) should start
with 30" instead of 20%. The second at page 8, formula (4.1): the square bracket
should be closed at the end of the first line and the factor 6R*ne~3{1—1b sinh (¢/R).
‘[2{ sinh (5/2R)]~* } should multiply the quantity in the second line.

The third at p. 15: the sign should be changed in the right-hand side of the formula
at the bottom of the page.

Finally, at line 15 of p. 16, 0/4 should be written instead of 1 — (C/A); Cis the moment

of inertia of the journal around its axis, 4 the moment of inertia around a normal axis
through O. )

In Section 4 we have also failed to remark explicitly that the expressions (4.6), (4.8)
for the force and moment of the couple due to the lubricant are correct to terms of the
third order in @, ¢, 6, §. The terms of second order in a, @ within the exprestion of p are,
for instance,

3Ry ¢ { [d cos 2(8 — B) + (2f — w)(a/2) sin 2(3 — A1 -

9 cosh (¢/R) cosh (2¢/R) 6al1 cosh ({/R) } ]
cosh (0/2R)  cosh (b/R) + " cosh (b2R)|

when introduced in the integrals which express F,, I, M, M, they give no contribu-
tion. Without this explicit remark the developments of Sect. 6 may appear unnecessary:
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The systems we consider are: System 1, a rigid cylindrical shaft rotating
at constant speed arvound its axis within a cylindrical bearing; System 2,
as System 1 but with an additional mechanism providing a force of elastic type
which tends to restore the journal axis onto the bearing axis; System 3, a
massless resilient shaft running on two identical bearings and carrying a central
massive disc.

In our analysis we will disregard the effect of weight on the rotor; hence
we will take rotor and bearings to be coaxial during undisturbed rotation.
We will assume the bearings to be of the flooded type (free side leakage and
feed) or of the type without side leakage; full film lubrication will also be as-
sumed (2). The last hypothesis is often seriously restrictive; there are reasons
to believe, however, that, even during whirls of large amplitude, cavitation need
not always occur (cf. Sect. 13).

Instability in System 1 due to the onset of « parallel » or « conical » whirl
wag studied in Part 1. Here we pursue the study of « parallel » whirls at large
“amplitude and provide more satisfactory proofs of the results: announced in
Sect. 7 for both cases of very short or very long bearings (cf. Sect. 12). It is
confirmed that in both cases: the coaxial configuration of the journal is un-
gtable; a whirl of increasing amplitude follows any disturbance; the eccentri-

if the validity of the expressions for F,, F, were restricted to the cases when O is in the
immediate neighbourhood of ©Q, the equations of motion (5.1) should be completely li-
nearised for consistency. )

We note finally that higher-order approximations in 8 for p are given in the paper
by J. 8. Avsnax: Torque produced by misaligment of hydrodynamic ga lubricated journal
bearings, J. Basic Eng., 82 (1960), 335-341. AusyaN made use of small parameter tech-
niques for solving REYNOLDS equations also in earlier papers, for instance in a
paper contributed at the Conference on Lubrication and Wear (London, 1957), cf. the
Proceedings, pp. 39-45.

(2) These hypotheses are embodied in the expressions used for the force which acts
on the journal and is due to the lubricant during « parallel » whirls (i.e. during motions,
when journal and bearing remain aligned).

We take for the components #, along the vector 20 and F, normal to Q0 the expres-
sions:

F,=— 12:51331)6‘277&(1 — a?)—8/2, F, = 12aR%bc*na(w — 28)(2 + a®)~H1 — a?)71/2
(long béarings without side leakage; SOMMERFELD case), Or
F, = — aRbe¢ma(l + 2a2)(1 — a?®)73/2, T, = (1/2)aRbPc¢ *na{w — 2/5’)(1 — q?)78/2

(short bearings with predominant effect of side leakage; OCVIRK case). In general, when
a = 0 we take ‘
F,=0, F,=Rbna f(a; ¢/R; b/R)(w —28),

and we assume that f(a) is a non-decreasing function of @, tending to infinity when
a—> 1.
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city of the journal axis tends asymptotically to the clearance; the speed of the
whirl tends to half the rotational speed. All these results are shown to apply
also to System 2, when the rotational frequency exceeds twice the natural
frequency of the restrained journal (cf. Sect. 13).

The remaining part of the paper is devoted to a discussion of forced vibra-
tions due to lack of balance in all three systems: it is shown that, owing to dissi-
pation in the lubricant, System 2 can be run through its critical speed even
when lack of balance is so severe that the displacement of the centre of gravity
from the centre of the disc exceeds the clearance in the bearing; this result
does not apply to System 3.

The paper ends with a discussion of the stability of these forced vibrations
for System 1.

A list of the symbols which are used in more than one section is appended:

a, eccentricity ratio: a = ¢je.

b, width of bearing.

B, a bearing number: B = 6zR%n/(\/Zmwcd).

¢, radial clearance of the bearing.

C, disc centre in System 3.

e, eccentricity of the journal: ¢ = | Q0| .

z, displacement of the centre of gravity of rotor from rot(;r

centre: I = | OG | in Systems 1 and 2; E =| C@ | in System 3.

F,, F,, components along 20 and normal to 20 of the force due to the
lubricant and acting on the journal.

1, ' a function of @, see footnote (2).

G, centre of gravity of rotor.

k, stiffness of spring in System 2 (magnitude of spring force equal
to k| Q0]).

2K, stiffness of shaft in System 3 (magnitude of the force acting
on C due to a shaft deflection oc equal to 2Koe).

m, " mass of rigid rotor in Systems 1 and 2.
2M,  mass of the disc in Sysbem 3.
0, trace of journal axis in central plane.

D, pressure in the lubricant.
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R, radius of bearing.
t, time.
By angular co-ordinate of 0 in a fixed cylindrical system of refe-

rence with origin in 2.

S=1—a, &=1—2fw).

7, viscosity of lubricant.

9, &, polar angle and axial co-ordinate with reference to the system
mentioned in the definition of f.

o, non-dimensional deflection of shaft in System 3: oC =] 0C|.
7, non-dimensional time: 7 = ot.
w, rotational speed of journal. ,
Wey critical speed. In System 2: o, = (k/m)*/2; in System 3:
w, == (LM,
'Q,  trace of bearing axis in central plane.
Note: A dotindicates a time derivative; a prime a derivative towards 7.

12. - Complements to the study of whirls of large amplitude: (2) Proof of some
statements made in section 7.

We proceed here to a closer study of the properties of the solutions of the
differential system (7.2), when @ ~ 1. These solutions describe parallel whirls
of a rotor of type 1 within a very long bearing at high eccentricity ratios

ma = maf? — 2&a(l — a)-3/2
(7.2) maf =— 2maf + Fa(w —2P)[1 + (a%2)] Y1 — a®)-1 7
F, = 6aR%bcy .

Let us put a(t) =1— 5(z), f(t) = y[1 — &(z)], v = ot and see if the assump-
tion that  and e are infinitesimal with increasing ¢ is consistent with equations
(7.2). It turns out immediately that y must be equal to w/2 for consistency;
furthermore it must be:

1
"o - 3 /2 8/
6 ~~4—~B§“6

(12.1)
. 4 : &

g =— 28— - Bed—tl2 B= 2.
L 3 me
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The first of these equations has the privilege of involving only d, so that its
study can be carried out mdependently of the second. The equation can, of
course, be substituted by two equations of the first order, if the new variable
% == § is introduced

: 1
(12.2) o = ;__B(s—a g, § =u.

The right-hand sides of (12.2) are regular functions for all 7, # and all posi-
tive 0. (Note that for §*/* the positive determination must be taken). Hence
there is one and only one solution of (12.2) that issues from any point (T, dy,
Ug), if 0y >0: say 6 = ), u = u(z).

We call (71, 7o) (71 << 79 << T2j 71, O T, Or both may be infinite) the interval
of 7 where the solution is defined. We propose to show first that 8z) =0

when 7 -7, if §,, u, are appropriately small: for instance if 07 + wl<<C

the property is valid under less restrictive conditions, the special case will
suffice here, however.
If we put p? =wu® 4 §° we have from (12.2)

00" = — u(Bud3— 4§ 4 1/4).

DO

(12.3)

. From this formula, it follows that the open arc O, of the circle o =1/4,
which belongs to the quadrant 6 >0, u >0 of the phase plane of (12.2) is a
~ line without contact for the paths of (12. 2) Another line €, without contact is
defined by 6 =1/4, u<< 0.

Let us call 8 the open set of points which has the closed arc (1, C, and the
portion < 1/4 of the u-axis as a boundary, and where &< 1/4; then it is
evident from (12.2), (12.3) that any point [d(z), u(r)] which enters § moving
along a path of (12.2) while v increases, can never leave § for v —7,.

Further, let us split S into the four subsets: 8, (where » >0), $, [where
0>u>— 53/2(1—— 40)/4B], &, [where — &°/3(1 — 46)/4B >u > — #2/4B],
and 8, [where u < — §°/2/4B].

By considering the field of directions of (12.2) one can prove that the po-
sitive half-trajectories issuing from points of &; cross the segment (0< §<<1 /4,
u=0) into S,, and hence into S, (because ¢ cannot decrease along a trajectory
in &); but all positive half-trajectories issuing from points of S, enter ;. The-
refore wherever we start in &, if we move along a path of (12.2) in the
direction in which [d(z), u(r)] moves with increasing time, we end up in S, and
never leave it afterwards; also, if we start from a point of the circle Where g <
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1/4, we remain in that eircle. Finally, as 7 — 7,, the point [d(z), ()] must
move towards a singular point of (12.2), hence it must be lim §(z) =0,

We pass on now to show that along the paths of (12.2) in 8§ not only & but
also w tends to zero when v tends to ,; this analytical property indicates that
eqns. (12.2) cannot describe phenomena where a knocking of the journal against

Fig. 1. - To illustrate the discussion of stability of Sect. 12 (a).

the bearing occurs. The approach between journal and bearing must take place at
a decreasing speed.

Note first that a value 4(C) of § can be found, such that the curve C;:
% =— (112 (O, a positive constant) is a line without contact for the paths of
(12.2) when 0 < 6 << 4(C). For — (0/2)6~*/*is larger than [03/2—4BCS /2] (40621
when J<< 4(C) =4BC(1 + 20%)~1. Hence all paths of (12.2) containing a
point which falls into the sector .0 < d< A, — O/ < 4 < — 33/2/4B)
tend to the vertex (0, 0).

On the other hand, if a path & of (12.2) existed tending to a point of co-
ordinates 0, u, (4, <<0) when v — 7,, then & would also cross a sector Sier;
and this is a contradiction. In fact, under the absurd hypothesis just mentioned,
& would possess points P (of co-ordinates, say, &;, %,) belonging to §,. But
P belongs also to 3, if € is chosen so that ¢ > |, | 6;2/2 and 6, < 4BO(1 +
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+ 20%)-1; such choice is always possible because there are ¢ large enough
to satisfy the inequality

by |2 4BC
o2 1+ 207

It is possible to state the condition about the vanishing of %(z) at the limit
for 7 — 7, in a more precise form: along all paths of (12.2) issuing from a point
of & one has '

(12.4) im0 __ 1
v, [O(T)]P12 4B

The proof of this statement requires a closer study of the behaviour of the
paths of (12.2) near the singular point at the origin; we provide here only a
sketch of proof.

Consider. the. differential equation

dau 1 B
(12.5) . . Zﬁ:“;‘l‘b“m, for 6>O,

Wwe have proved above that all solutions % = u(d) of this equation wh'ch are
represented by paths in & are infinitesimal with § and we want now find out
the order. Let us put in (12.5)

(0) =— [v(d) + D]&,
where D and o are constant (¢ >0) and v(d) is infinitesimal with &, Disregard-

ing quantities of higher order in 4, we find an identity which can be satisfied
only if

«=3/2, D =4B)

This result confirms our statement (12.4). However, if we proceed further,
we putb

(12.6) u(d) =— [v(8) + (4B)-1]& 2,

and attempt to solve formally eqn. (12.5) by taking in (12.6) for v(0) a function
which is analytic in a neighbourhood of § = 0 and vanishes with o:

(12'7) v = zk (lkék,
1
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we find a set of recurrent relations which determines the coefficients «, comple-
tely: we must conclude that there is at most one solution of (12.5) of the indi-
cated type. This conclusion seems at first to come into conflict with the state-
ment which we want to prove; the contrast is only apparent, however.
Although all solutions of (12.5) can be put into the form (12.6) (with »(d) infinite-
simal when & — 0) in a neighbourhood of § = 0, one at most can be so repre-
sented using for »(d) a function which is analytic at § = 0.

Some evidence of this behaviour of the solutions of (12.5) can be readily
obtained. If a function of the type (12.6) has to satisfy eqn. (12.5), »(d) must
be a solution of the equation
v v+ 0{)(52(‘v—912e D — (4B .
dé 4+ D& v — D)

Near the singular point at the origin eqn. (12.8) is approximated by the
simpler equation o ; . e e

dv v 4+ 6D3 5%
as 4D

which is linear and has the general integral
DYy l 1

3D - — -
12.9 Y Y-O TRy = (e R 80%0° .
( ) 2(6) T ¢ E (8 262> - Ce ;

here € is an arbitrary constant and E* is the function

i )
(y, BULER-MASCHERONI constant).

E\(m) =7 + log v + Ei:n n!ln
It is clear from (12.9) that though finite limits can be found for o(d) and its
derivatives when ¢ — 0, »(d) itself is not in general analytic in a neighbourhood
of § =0.

12. - (b) Time dependence of the eccentrieity ratio. Compatibility of the second
equation (12.1). Case of very short bearings.

Formuls (12.4) has an-immediate consequence: 7, [the upper limit of the
time interval over which the solution of the first eqn. (12.1) is defined] is infi-
nite. In fact

0
dé )

L]
To— T :fdr: 5
7 &s
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and the last integral does not converge because u is a zero of order 3/2 when
d > 0. More precisely it follows from formula (12.4) that § tends to zero as
77% when v — - co:

(12.10) lim § 7% == 6482,
>

In physical terms this means that the contact between journal and bearing
(assuming, of course, that both are perfectly smooth) cannot occur within a
finite inierval of time. Actually, here and earlier in Sect. 12 (a), we ought not
have drawn conclusions yet as to the physical significance of our analytical
results, because these results follow from properties of the first eqn. (12.1)
and the derivation of that equation can be considered sound only after proof
is given that e itself [i.e. any solution of the second eqn. (12.1)] tends to zero
when v — -+ co. However, such proof is fairly straight forward: we sketeh it
here. :

Because the second eqn. (12.1) is linear; its general integral can be given
explicitly

*dd '
&(r) =e™4 (80 — 2 e dr)
(12.11)
dr

A(r):§B[5172.

Te

For large 7 the integral in the right-hand side of the first eqn. (12.11) be-
haves as

P

. _w T el2
—12¢ B2¢ 12 [»—;dr,
e
To

or as

f
702

z.:
‘1—36 B‘“’G—%f l2el2h 12 e12 N E:g<f)_E=;: (i)} .

1 T2 72 ! 12

on the other hand the asymptotic behaviour of the function E* is expressed by

the formula (3)
e® [A-1 !

) =[5 o o),

(*) See, for instance p. 144 in the second volume on Higher Trascendental Functions
of the BaTEaan. Manuscript Project.
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for # — -+ co; hence the asymptotic behaviour of ¢(z) itself is given by

15368%

(12.12) e(r) ~ (for T — + o0).

From this result the desired property follows; furthermore the result shows
that the limit w/2 for the angular speed of the whirl is approached from below,
i.e. that this speed is always less than w/2 (when transient conditions are
excluded).

It is appropriate at this point to remind the reader that our analysis con-
- cerns so far only a journal rotating in a very long bearing. As the general case
of a bearing of any aspect ratio is difficult to approach, we have checked at
least that parallel results obtain in a second special case: that of a very short
bearing. For such a bearing, under conditions of perfect alignment, the compo-
nents of the force due to the lubricant and acting on the journal are '

aRb¥y a(l + 2a?)
@ (1 —a2pl

F,=—

(12.13)
ARy alw — 25)
22 (1 —a2pre’

F, =

go that the differential system

[ ma = maf®—28&,a(l + 2a%)(1 — a?)~5/2
3 ——9mafh 39 — 981 — qa2)-3 /2
(12.14) maf map + Fa{w gl — a?)
5 aRb%n
Po2e

takes the place of eqns. (7.2). At high eccentricity ratios eqns. (12.14) reduce to

[ 6"=— (1/4) — (3/2) By6~5/2¢’

(12.15) g =— 28" — Byed3/

| B: = gz/(’\/gmw) ’
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when the notation of Sect. 12 (a) is introdueed. Along the lines of this and the
previous section it is possible to prove that the solutions of system (12.15)
behave asymptotically as follows

4B,\2/3 16
(12.16) 0 ~ <—_[—5) , e~ (4By)2f 7358, (for 7 — o0),
and these formulae show that the results proved for the case of long bearings
are substantially valid also in the present case.

13. - Discusssion over the assumption that the film of lubricant is complete.
The case of an elastically restrained journal. '

The expressions (7.1), (12.13) which we have used in our analysis for
the lubricant force are obtained under the assumption that the film of lubricant
between journal and bearing is complete. This assumption is often questioned
because it is contrary to experimental evidence in those instances where it
leads to the prediction of high negative pressures within the film. We want to
show now that the assumption is acceptable in our case.

-We consider explicitly only the case of very short bearings (though similar
conclusions can be reached also in the alternative case). In general the pressure
distribution is given by (%)

(13.1) D

c2

3y (b2 e (2B — w)asin (@ — B) + 24 cos (& — B)
AV [1—acos (®—p)P !

and when the eccentricity ratio a is large (~1) by

3y (b2 £ we sin (& — B) + 28 cos (¢ — ) )
- [l—(1—3dcos@—pp

hence, for v — 4 oo,

€08 (& — B)z1i
{ v25[1 — cos (§ — B)1+ 4B, cos (& — p) I .

4n (b2
P ~_7_7 (_4:._ Cz) (4B2)2/3

c2

‘(%) See, for instance, formula (2.12) in the paper « On the Vibrations of Shafts Rota-
ting on Lubricated Bearings, Ann. Mat. Pura Appl. (4) 50 (1960), 223-248 ».
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The minimum of p (which occurs at the point of maximum film thickness)

n (b2 N ’
Pmin ~— > ("'_’_ é“) ("1"82)“/3 7783

actually tends to zero, as v — -~ oo. On the contrary the maximum of p (which
occurs at the point of minimum film thickness) tends to infinity

n (b2 . 718
Puas = iy ™ ¢ PR

An essential ingredient in our proof is the ecircumstance that (2[3’/w)f1
tends to zero more rapidly than a/w . It is evident from formula (13.1) that if
the whirl speed-were not-equal to-one half the running speed-at-the limit,-then-
there would be a tendency for the negative peak of the pressure to grow worse.
There are cases (when the journal is a part of an elastic system: a resilient rotor,
for instance, as in System 3) where the whirling speed tends to a resonant speed
of the system (*) (different in general from w/2); in such cases it may be presumed
that cavitation within the film will be caused by the movement of the journal.

The system considered in Sects. 5, 6 (journal on which an elastic restoring
force is acting; System of type 2) is a curious hybrid. On the one hand its rule
of stability recalls the rule operating for resilient rotors; on the other hand
the frequency of the whirl, when w >2w,, tends towards w/do rather than towards
the natural frequency w./4m when the eccentricity ratio approaches unity( and hence
the onset of cavitation within the film of lubricant can be ruled out). To pub
this phenomenon in evidence we carry out a partial analysis of the differential.
system

ma — maﬂz — 9§2d(1 -+ 2a%)(1 — a?)~52— ka
(13.2)
maf =—2map + Fa(w— 2p)(1 — a2,

where, as in Sect. 5, k& is the stiffness of the spring on which the journal is sus-
pended. A general study of (13.2) being beyond the point here, we look for some
reasonable simplifications. We intend to limit our analysis to cases of large
whirls, when @ >2w,; hence we will put ¢ =1 — §, as before, keeping only

(®) See Sect. 5 of the paper quoted in footnote (%).
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the terms with the lowest powers of §. But as for B we want to leave now its
choice free. We formulate instead an alternative simplifying hypothesis: that
the radial component of the acceleration can be approximated by af2, the ratio

N

A i

F‘ikg.'.?.k - To il]ustfate the discussion of stahility of Sect. 183.

ajaf? being considered as very small. Note that, when « is nearly equal to 1,
its second differential cannot be but negligible when compared with the centri-
petal acceleration. .

Under these assumptions the system (13.2) is reduced to

8" = (2/3B,)(u2— »?)8o 12
(13.3)

o 3B — 2v) — 84 y(»2— u?)
o 613,08/ !

if one sets v = flw, p? = (kjwm) = (w./w)* to avoid dimensional variables.
We are here concerned solely with the case u*<1/4; in that case a study of
the paths of (13.3) in the gquadiant » >0, d >0 of the phase plane (4, ») leads
to a proof that, along any path, d(r) — 0 and () > 1/2 as 7 — + oo. In fact
all paths converge toward the singular point (0, 1/2), which is an attractive fan.
These statements are based on the following remarks (See Fig. 2).
The derivative ‘

dv 3BX1 — 2v) — 8ty(v? — u?)
as 40M(ut — 97 ’

(13.4)

3B3(1 — 2u)

1ol for any 6 >0 when 0 <»<u; in particular larger
1612

is larger than
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than 3B%(1 —2u)/(46%?) for 6>1, 0 <» <p. Then, all paths of (13.3) issuing
from points of the region &: 0 <y <y, 0< <1 + 3B;(1 —2u)v/(4p®) must
cross the segment » = u, 0 << 6 <1 + 3Bj(1 —2uv)/(4p) upwards (the upper
limits imposed here upon 6 are to some extent arbitrary; but we are not inte-
rested in what happens for large values of d). For all » >y, ¢’ is negative;
hence all paths cross any straight line ¢ = const., say 6 =1 + 3BY 1 —2u)/
/(4u) to the left, for » > pu; and once they have entered the region » >pu, all
paths bear to the left, touching in the limit (8 = 0) the branch of the curve

BBI1 — 20) = 8(2 — ),

which issues from the point (0, 1/2).

14. - Forced vibrations: (a) Resilient rotor.

Self-excited vibrations of resilient rotors are studied in the paper veferred

to in footnote (%), though the possibility that cavitation might set in within the
lubricant is not considered there. In the previous section we have remarked,
however, that the film of lubricant in the bearing will probably cavitate when
the amplitude of vibration is sufficiently large. A fresh discussion of the problem
is therefore necessary, but we will not pursue it for the moment. We want first
to show in evidence another striking difference between the behaviour of a re-
silient rotor (System of type 3) and the behaviour of a rigid, but elastically
restrained, rotor (System of type 2) in connection with their forced vibrations
caused by unbalance.

Such vibrations are the subject-matter of Sect. 7 in the paper often men-
tioned ; but the simplicity of the results is overshadowed there by the complexity
of the developments due to having considered rotors with distributed mass.
Hence it appears to be worthwhile to recast the problem in a simpler setting
by examining here the behaviour of a resilient rotor consisting of a flexible mass-
less shaft carrying one massive unbalanced disc; in other words, to repeat the
elementary calculations which in current treatises (°) lead to the definition of
critical speed; abandoning, however, the hypothesis of rigid supports and ac-
counting for the forces due to the pressure generated in the film because of the
eccentric position of the journals (see Fig. 3).

A preliminary remark is worthwhile. The radial and transverse components
P,, F, of the force acting on the journal and due to the lubricant have exactly

(8) As in TIMOSHENKO’S treatise on vibrations, for instance, cfr. Sect. 17 (p. 92 in
the second edition).
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opposite values in these two cases: (i) when the position of the journal axis is
steady; (i) during a journal whirl of constant amplitude and constant speed
equal to the romtiona,lkspeed (i.e. during a whirl of the type which is caused by
lack of balance). In fact REYNOLDS equation has the same form in the two
cases except for the sign of the right-hand side (") and also the boundary
conditions remain the same. Even if cavitation had to be considered, the pro-
blem of solving REYNOLDs’ equation would be the same in the two cases (8).

Under steady conditions, if the film of lubricant is complete, F, is zero and
F, can be put in the form

(14.1) F, = qwRbf,

where f depends only on ¢ and also on the geometry of the bearing (i.e. on the
ratios ¢/R, b/R) (*); these properties of ¥,, I, must remain true then also during

a synchronous whirl. For our present purposes we need not specify f; we need-

only assume that f(a) is a positive non-decreasing function of « tending to in-
finity as @ — 1. Thereby we manage to avoid reference to special cases (such
as the cases of very long or very short bearings), and we confer to our argument
greater generality. We may mention nevertheless the asymptotic expressions

[, ame tanh (b/2R) .
f = po [1 -‘—"('IJ/TR)—} +0(a') . when a ~0
(14.2) f = ’:O’Q (1— q2y-srz when (5/R) ~ 0
;= B”f (1 4 g)“ (1 — a2)-1/2 when (E/b) ~ 0.

(") See eqn. (3.10); in this Part 2, 6 is always taken to be zero and here we consider
the special case ¢ = const. and f equal to either 0 or w; furthermore % is unaltered, the
angle # — f being always measured from the direction pointing to the minimum of
film-thickness. )

(%) Tor an experimental verification see the paper: Visual Study of Film BExtent in
Dynamically Loaded Complete Jowrnal Bearings by J. A. Cotx and C. J. HUGHES in the
« Prooceedings of the Conference on Lubrication and Wear (London, 1957; published by
the Inst. Mech. Engrs.)» .

(*) The statement is correct for any choice of @ and ¢/R, b/B. See: L. N. Tao, General
Solution of Reynolds Bquation for a Jowrnal 'Bearifn,g of Finite Width, Q. Appl. Math.
17 (1959), 129-136. ’

2. — Rivista di matematica.
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Returning now to our main problem, let us call ¢ the centre of gravity of
the disc, a point which is assumed to be slightly displaced from the geometric
centre C: | CG| = H. During rotation, due to this eccentricity, a centrifugal
force acts on the shaft causing deflection; under steady conditions the movement

. Fig. 3. - End View of Resilient Rotor.
(a) Centrifugal Force. - (b) Elastic Forces. - (¢) Force due to the lubricant.

of the deflected shaft will appear to a fixed observer as a steady whirl of speed w
superimposed on the uniform rotation. The magnitude of the deflection, g¢ =
=| 0C|, can be easily obtained from equilibrium conditions.

If the lubricating film is complete, the oil force, as we have menmoned
“is normal to £20. The elastic force acting on €, which is generated by the bending
of the shaft, has the direction of the vector OC. Finally, as the whirl is assumed
to be steady, the motion of the bent shaft can be described as a rigid rotation
around Q; therefore the centrifugal force acfing on @ has the direction of 2G.

The condition of equilibrium for the forces acting on O requires OC to be
normal to Q0 and further the magnitude of the elastic force (which is proportio-
nal to g¢) to equal the magnitude of the oil force

(14.3) Koe = nwRba f(a);

here 2K is the stiffness of the shaft. The condition of equilibrium also requires
that the elastic force on C be opposed to the centrifugal force acting on G
(an appropriate couple being further supplied by the driving motor). As a con-
sequence the relative position of the journal and the disc must be as shown
in Fig. 3. This implies the relation

(14.4) : Esing =ca,
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if ¢ (0 <@ <) is the angle between the vectors €O and OG; furthermore the
equality between centrifugal and elastic force can be expressed as

(14.5) Koc = Mw*(ce— I cos ¢) ,

where Al is half the mass of the disc. Eqn. (14.5) ¢an be put in & more conve-
nient form by introducing the critical speed of the shaft when rotating on
rigid supports w, = (K/HM)1/2 as follows

(14.6) [1— (wefw)*]oc = E cos ¢ .

Eqns. (14.3), (14.4), (14.6) determine o, @ and ¢ as functions of w.and we
are interested in finding the values of w for which ¢ and « are maxima. It is
obvious from eqn. (14.4) that the maxima of ¢ and sinf occur at the same
speed. Let us then distinguish two cases: << ¢, B > ¢. In the first instance the

- maximum of ¢ is Z/c and is reached when ¢ = /2. But; for ¢ = H/¢, ¢ has a
finite value given by eqn. (14.3); hence when a reaches its maximum, o must
be equal to w,. We conclude that; for I < ¢, the absolute maximum of the am-
plitude bf vibration in the bearings is reached at the critical speed w,, as caleulated
in the hypothesis of rigid supports.

The absolute maximum of ¢ is also its only maximum. The proof of this
statement can be easily achieved: formula (14.3) to (14.6) above imply the fol-
lowing relationship between w/w, and a

Z = for w < w,
e 1+VIt e

(14.7)
g mé forw >w,,
@ V14—

where .

2 Naf Rbw,n
I e Y == .

3 (B2 — c2a2)12 4 N ey

¢ is a function of ¢ defined within the interval (0, E/c), increasing from 0
t0 + oo over that interval. On the other hand the first formula defines a func-
tion w/w, of & increasing from 0 to 1 when & increases from 0 to -+ oco; and the
second formula defines another function of £ increasing from 1 to -- oo as &
decreases from 4 co to 0. Inverting now these monotonic relationships we find
that a increases steadily from 0 to F/c when w increases from 0 to w, and de-
creases henceforth to zero again while w tends to infinity.
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As for the maximum of ¢, it is obvious from (14.3) that it is reached for
w >w,; in fact we have ‘ ‘
do . nRb j d{af) da }
b

[ A L
il ol K

da dw

d . da . "
and this formula shows that d—g remains positive when i s positive.
w [43)

We may add that, because of eqn. (5.4), ¢ is betwen z/2 and s when o <C
< w, and between 0 and =/2 for w > w,; this is equivalent to saying that for

Fig. 4. - End View of Rigid Rotor.
(a) Centrifugal Force. - (b) Elastic Force. - (¢) Force due to lubricant.

speeds less than the critical speed | QG | is greater than | OC| and vice versa;
this result recalls a similar one of the elementary theory (cf. loc. cit. footnote
(%), P- 93).

Let us now consider the second instance which corresponds to conditions
of severe lack of balance. When E >>c¢ the damping due to the lubricant is not
sufficient to run the shaft through the critical speed. In fact sing can then never be
equal to 1 and cosp never to zero; therefore for w — w,, ¢ tends to infinity
and @ to 1.

14. - (b) Rigid rotor which is elastically restrained or free.

We go back now to consider, as in Sects. 5, 6 and 13, a rigid rotor which
is elastically restrained (System 2). We assume here, however, that want of
balance occurs and we intend to study whirls of steady amplitude which may
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ensue. With reference to Fig. 4 and the notation shown on it, the following equi-
librium equations are self-explanatory

m{ca cos o + B cos y)w® = keaV/ 1 - N w/w,)?
(14.8) tan o = Ng(w/w,)
casine = Fsiny.

As in Sects. 5, 6 and 13 we call now m the mass of the rotor and % the stiff-
ness of the restraining spring; N is now the non-dimensional group Rbown/ke.
Formulae (14.8) imply

(14.9) (Bfea)t = [1— (w,/w)*]* + (o) Nf,

whence it foﬂows t]kiatya, does not tend to 1 when w — w, even when E is larger
than ¢: when w — w,, @ tends to the solution of the equation

Ble = Naf

which is unique and less than 1 for any value of the ratio le .

Amn elastically restrained rigid rotor can run through its critical speed even
when lack of balance is such that the displacement of the centre of gravity from
the rotor awis exceeds the clearance.

The dependence of @ on w can be defined for any special choice of the func-
tion f through a consequence of (14.9)

(@/w)? ={1— (V3212) + [(Vf4)— N2f* + Brf(eay]i }

When the ratio Efc is sufficiently small, for instance, so that « itself is small
and f can be considered to be approximately constant, it turns out that ¢ has
a2 maximum when

wfo, = [1— (Nf2)] 1,
Le. at a speed higher than w,: the maximum is

= (Bfo) { Nf[1— (3f2/4)] 2},

a’max
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It is interesting to remark at this point that, if the rotor.is not elastically
restrained (System 1), the relationship between eccentricity ratio e and the
displacement of centre of gravity becomes

(14.10) Bje = a [1 . (171)Rf )2 1/2 -

mew

Again the eccentricity need not be less than the clearance at any speed.
For any value of the left-hand side in (14.10) there is a solution in «a, with a < 1.

15. - Stability of forced whirls.

Steady rotations of Systems of type 1 have been shown to be unstable; it
is interesting to speculate now on the stability of the whirls which are due to

~-lack of balance: A linear analysis; of which details-are given below, suggests that -

the latter movements are also unstable.
Let us state again the results of Sect. 14 (b), before we approach the new
problem:

(i) An unbalanced rigid rotor may move in a whirl of steady amplitude
and frequency w/27; hence, the positions of 0 and ¢ during whirl (say, 0 and G)
remain stationary with reference to a system of co-ordinates S: (, y) centred
at 2 and rotating at a speed w;

(ii) if & is chosen so that the w-axis goes through O, then the y-axis
goes through G and the co-ordinates of O and G are respectively (¢4, 0) and
(¢¥, 0), where A is the solution of the equation

Bo =41+ [”—m f(A)r [

mew
or, in particular, for long bearings
Ble = A{1+2B*[1 + (A%2)]2(1 — 4>~ }i2,
and Y is given by { (E/c): — A2 12,
If a disturbance displaces O from O to a new position of co-ordinates
{cA@ + p), cAv} then G moves to {cdu, ¢¥ -+ cAv } because the vector

0@ has invariant orientation with respect to 8. If, to fix our ideas, we make
reference to the case of long bearings we can calculate explicitly the value of
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the components of the force which will act on the journal in the new position;
within a linear approximation it is )

[ B = — 24/3mew’BA(1 — A2y iy

_ v/ Zmew?BA Lo 1—(4%/2) L A
l I = T {1 P o I

Alternatively, making reference to the system &:
Fo = —A/2mecar* BA( — A2)-s12 {20 — (1 — 49 [1 -+ (422)]w }
'F,, =F,.

The liﬁearised equations of motion for G in a neighbourhood of @ are therefore
W= 20 = — /I — A% (1 Ay 4 (422)]1 ) -

(15.1) { Y —v A+ 2 =

- : 1— (42%/2) 4+ 44
=—/2B[1+ (422 —1]—~A2—2/212’~:~—M——
VBRI )0 — 4 U o @i m e }’
where account is taken of the movement of the system §. The character-
istic equation is

44/2B[1 — (A2/4)]

Z4
[T+ (A2/2))(1 — A2)3r2

2 +2{1 + 4B[1+ (A/2)]7*1 — 422 Z2
—3V2BA1 — Axse[1 1 (A%2)]2[1— (4%2)]Z +
1+ 2B[1— (42%2) + A9[1 + (42/2)]3(1 — 422 — 0 ,

Routh’ rule assures us that this equation has roots with positive real part,
for any value of A less than 1; it follows that equs. (15.1) have solutions which
increase exponentially with time. Hence the conclusion that the whirls are
always unstable. This conclusion does not seem to be fully borne out by experi-
ments; rather, experiments seem to show that stability is achieved when 4 is
sufficiently large. The failure of the theory in this respect is most probably due
to having disregarded effects of cavitation, which’ may occur at high eccen-
tricity ratios when the whirl Speed, as happens here, is different from w/2. We
propose to examine the question again in a later paper.

* * %






