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Vo K. Varasa (9

Laplace Transform and Self-reciprocal Functions. (**)

1. — The integral
(1:1) D(p) =p J‘c'“ fyar, CRApY> 0,
0
is known as the LAPLACE transform, provided the integral on the right conver-
ges, and is symbolically denotes as

(1.2) D (p) =1 (1):

D (p) is called the image and j (1) the original.

S. (. Mrrra and B. N. Bose [4] have investigated the behaviour
of either of the functions @ () or f () when the other has a self-reciprocal pro-
perty in a certain HANKEL transforms, or as particular cases in sine or cosine
transforms. Recently V. P. MAINRA [8] has investigated the behaviour of these
functions when either of them is a transform under the kernel @ * (r),

which he defines as ‘
D0, () = [, () y* T, Ay,
4]
where
~ /.5 ] 7 (;l‘f ¢ R - 1 R ()~ 1
(1.3) By, (1) = /T[T, ()], [—)7, V> —5 B> —5,

and plays the role of a transform (Warsox [5]) .

(*) Ricevuto il 10-VI-1961.
(**)- Indirizzo: Fergusson (ollege, Poona 2, India.
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The object of this paper is to investigate the behaviour of f (1) or @ (p)
when either of them is a transform under the kernel 53,,1 ", . (v) de-
R
fined as (BHATNAGAR [1])

(1.4) By () = AL [ [T () T (8) s
o 0

. v

i« ) diy ... diyy
¢

bty oo byyd bty by

() o,

n
n-t

The relations obtained here give an additivnal method of finding
the operational images or the original when the transform of either of

them are known under the various kernels viz. o, (@), ©,,; (¢) and in

v

general the kernel in (l..»lr).

2. — Let f (1) =@ (p) . We know that

1 — e 1
@2.1) meum%ﬁpmmwwmepuhw@,R@»>~§.
Applying GorpsTEIN’s theorem [2], we get
7 s ——— ;- 1y di
2 [ 7, (\2tfe) k, (V2Hje) [ () At = [, (ﬁ) O
[} [}

provided f (t) and @ (¢) are continuous and integrable in (0, co). Let us put

1 . . 1
¢ = -, and interprete assuming that - ==, we get
) i P

o«

(2.2) ! dt
! 7

TP AL RS P PACES

'0 0 .
Let us write (2.2) as

(2.3) fr () == Dy ().
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Applying GOLDSTEIN’s theorem again with (2.1) and (2.3), with » replaced
Ppiyng S ’ P
by u, and repeating the process of interpretation, we geb

2.4 Shwa G azp [oma, (0)E

Substituting for f; (1) and @, (#) from (2.2), we get

«©

%/ ()dt{f(/ dy—p/ ( (y)J</)(}/z{

changing the order of integrations, assuming it to be permissible, we get, after
2 slight change in variables .

0 S o0 22 5 v [0
Hence by (1.3), we have
©.5) \/_] f(J) @, ( )d = \/p / @(1/.7/) o, (7y) dy .

Now 1et—— g (1/t) be the transform of —- \/_ f (t) with respect to the Kernel

\/

o () and let

* eV

g =y,
then we have from (2.5)

g (@)= /5 f ? (5) NG @, (0y) 4y,

(I) 1/y) ~
- e

1 - ~
showing that vy (¢)/4/7 and @ <2) 4/t are w,, transforms of each other. Hence

7. — Rivista di matematica.
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Theorem 1: If

f@)y=o(p),

and if f 1)/t and g (1/t)}4/ be w,, transform of each other, then @ (1/t)/r/F
and (t)/\/t— are also transform of each other, provided the integrals involved

1 1
converge absolutely and B (u) > — 5 R (v) > —35-

1 — —
If we start with the alternative assumption that @ (t—) A/t and y (1)/1/t are

(I)l‘ﬂ, transforms of each other, the theorem will then read as

Theorem 1 (A): If f()=D(p), g{t)= y (p) and ifk @ (lt) /\/i_ and

- ~ - 1
p ()A/t be @, transforms of each other, then f(t)/4/f and g (_t) /A/t are also

. 1 _
w, , transforms of each other. Next let us suppose that @ (;) [/t be self-re-

ciprocal in the w,, transform then (2.5) gives

1
Further, if @ <l—9) == h (t), then

i) ~ 1
/‘\/‘@‘ w;l.,v (a;:[/) d:’/ - '\/5}" .
0

1

showing that f (¢)/4/f and 7

1 -
h ( t—) are w,, transforms of each other. Hence
Theorem 2: If

&= (p),

h@%@@)
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and if (])( ) /4/ be séli- 1eelp10ca1 in the @, , transform, then —= /_ f (t) and — /_ ;3
1 . . .

( 7) are transforms of each other provided the integrals involved converge abso-

1

1
lutely and R (1) > — 5 R(v)>— 5"

If instead of the above, we assume that — f (¢} and —— /_ ( l) are a) , tran-

\/ﬂ
sforms of each other, where

1.

ht)=0|-

0= ()

we get from (2.5)
. D (Lfy) ~
k(@) 3= /D / —\7%— w,. (py) dy
0 *

whence

@

717’7 ? (E> :_/m@ G) N1, (PY) Ay

- 1 1y, S ~
showing that — & (—) is self-reciprocal in the w, , transform
&x &£ ’
Hence converse of Theorem 2 is also true, i.e.

Theorem 2 (A): If

k(1) == (1/p)

and, if 7 f(t) and — \/_ h (1/t) be a) , transforms of each other, then \7 D (1/ty
is self-reciprocal in the ww transform, provided conditions in Theorem 2 are

satisfied.
If in the alternative we assume that f (1)/4/t is self-reciprocal in the o, ,

transform and that

f(:;)—%x(p),
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[}

we get from (2.5)

1 l ~
f(“) =D | d)—\(/l—/~ &, (PY) dy .

Hence

zw:/®w
VP VY

v (PY) dy

showing that y ()/r/@ and @ (~> A/ arve @, transforms of each other. Hence

Theorem-3:-If

fr)=x @
and if \—/t f () be self- 1e01p100%1 in the the w , transform, then y ( t)/\/t— and
) ( ) /\/t are a)u, m‘lnsfouns of each other plowded the mtefrl als involved con-

1
verge absolutely and R (u)> —~ , R(») > ME‘,

The converse of this can also be proved in the manner of Theorem 2

3. — We had obtained the operational relation

(I)

i o o
(3.1) | v By ( dy == 4/p f \/# M.(py) dy

Let us denote this as

(3.2) @) =D (p).
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Also from (2.4), we have

Hhoaassf a0, )Y,

where f; (2) = @, (p) from (2.3). :
In (3.3) replacing f, (¢) by f, (&), @, (t) by D, (2), 1 by A, we get

©

| 5.0,

]
skubstit'uting for f, (¢) a,nd D, (1) from (3.1), we get

-3 L=} [

1 r b\ di F @ ~ . rooipy dt (I)(l/J
R );'/rf 77 O WD 8y 2 [ T3 (7) i | = B ) O
0

n o

0 0

changing the order of integration, assuming it to be permissible, we get, after
a slight change in variables, ,

/ 1 f ) (1 dit (D (I/J) ~ py, di
6H o= [ dyf 1,06, (%) = vl (7,08, ( )w .
4] 0 - 0
Now BAHTNAGAR has shown that
~ zyy b l 1 1 —1_ )
D5 (@Y) = [J ) @ (t)\/t_ (‘u+2,v+-2—, A5 >0

plays the role of a transform.
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Hence we get from (3.4)
- 1 f 1/) — [ D(Lfy) ~
(30) u| A /{L) Yo ] =W 19,4 )
\/a ) '\/J s _ \/p / ’\/ N (p./

Let us write (3.5) as

fas () % Dy (p) .

In (3.3) replacing f, (¢) by fs D, (1) by D, (t) and p by &, we geb

: /mfs OFA|

Substituting for f, (f) and &, (¢) from (3.5), inverting the order of integra-
tions, we get after a slight readjustment in variables

/Q) >dt

@

. 1 Oof ) ~ ¥y di
(36) = '\/J ’ J$ (t) w;m A (Lt) '\/I

=

(I) 1/1/ J (t) (pi/) d?
,u 2

\/z‘

]

Now by definition a kernel

<«

) ayy di
C()'u‘. Mas ooy Ly (f/JZ/) == / J!‘n (t) w!‘n Hay vees Hyey ( i ) \/

2 (yn - >0forn =12, .., fn).

0

Hence (3.6) yelds

@™

(/y)
77 On =V [ = i B 9) Ay

o 0

Denoting (3.7) as

fu (@) =

q)()
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replacing f, () by 7 (¢), @, (¢) by @, (t) in (3.3) and repeating the above process
over and over again, we get finally

N 1)~ N A = [(P0)y) ~
08 e [ DR Buns W) W VD[S B 00 40
0 4

Now it can be noticed that the form of (2.5), (3.5), (3.7) and (3.8) is exactly
similar where the kernels occurring are Z;W ; Z)M,;_ ) @y A0 ZUW';_YS,._" .
respectively. Hence the theorems which have been stated for the kernel w, ,
are true for the other higher kernels and in general true for the kernel

B tgottyy ons Hn ().
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