S. K. JAIN (*)

On the existence of identity. (**)

The present note is intended to consider the existence of identity in a primitive ring which satisfies a certain condition. It is analogous to the condition given by Herstein in his paper for the commutativity of a ring. By a primitive ring we mean that A contains a right-sided maximal ideal F whose quotient (F:A)=(0).

THEOREM

Let A be a primitive ring having no non-zero nil potent elemnts and if

$$(xe - x)^{n(x)} = xe - x.$$

for every $x \in A$ and e, a fixed element, $\in Z$, centre of A.

Then A has identity.

Before we prove the theorem we prove

Lemma: If a ring a has no non-zero nilpotent elements then any idempotent in R must belong to Z.

Let $E^2 = E$, $E \in \mathbb{R}$, is therefore an idempotent Take

 $x \in R$

^(*) Indirizzo: Dept. of Math. Deshbandhu Colege, Kalkaji, New-Delhi (India).

^(**) Ricevuto il 18 marzo 1961.

Now

$$(Ex - Ex E)^2 = (Ex - Ex E) (Ex - Ex E) =$$

$$= Ex Ex - Ex E^2x E - Ex E^2x + Ex Ex E =$$

$$= Ex Ex - Ex Ex E - Ex Ex + Ex Ex E =$$

$$= 0.$$

Similarly, $(xE - Ex E)^2 = 0$.

Since it has no non-zero nilpotent elements, then

$$Ex = Ex E = xE$$
 i.e $E \in Z$.

Since A is a primitive ring it possesses a maximal right ideal ϱ which contains no non-zero two sided ideal of A. Thus $\varrho \cap Z = (0)$. (Z being its centre) since if $x \in \varrho \cap Z$ then xA = Ax is a two sided ideal of of A located in ϱ , so must be (0).

By the primitivity of A we must conclude that x = 0.

Now let $x \in \rho$.

By the hypothesis

$$(xe-x)^{n(x)}=xe-x.$$

Then

$$[(xe - x)^{n-1}]^2 = (xe - x)^{n+n-2} = (xe - x)^n (xe - x)^{n-2} =$$

$$= (xe - x)(xe - x)^{n-2} = (xe - x)^{n-1}.$$

... $(xe - x)^{n-1}$ is an idempotent.

 $(xe - x) \in \varrho$ and also, therefore $(xe - x)^{n-1} \in \varrho$.

$$\therefore (xe-x)^{n-1} \in \rho \cap Z$$
.

It implies $(xe - x)^{n-1} = 0$.

Now

$$0 = (xe - x)^{n-1} (xe - x) = (xe - x)^n = (xe - x)^n$$
$$= (xe - x)$$

. Tor every
$$x \in \varrho$$
, $xe = x$

205

Suppose $a \in \varrho$; $r \in A$... $ar \in \varrho$.

We then have

$$(ar) e = ar$$

or

$$a (re - r) = 0 , \qquad \varrho (re - r) = 0$$

which in a primitive ring implies that either $\varrho = (0)$ or re - r = 0.

If re - r = 0 then it follows that e is the identity of A.

In case $\varrho = (0)$, then A must be a division ring, meaning thereby, that A has identity.

The author wishes to thank Dr. P. B. BHATTACHARYA and Dr. P. K. MENON for the kind inspiration and encouragement.

÷