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The Maximum Term

in the Taylor series of an Integral Function. (**)

Let f(2) = > a,2" be an integral function. Let
0

M(r) = max | f (re®) |, m (r) = max| a, [
6 n

and let N (r) be that value of » (or the greatest value if there is more than one)
for which |a,|r" =m (»).

An account of the properties of M (r), m (») and N () has been given, for
example, by VALIRON (1); and perhaps the most striking result is that if f(2)
is of finite order, but not otherwise, log m (r) ~log M (r) as r tends to infinity.
Now if we are content to restrict ourselves to the case where f (2) is of finite
order, it is possible to prove this and allied theorems a little more directly than
Valiron, and such is the purpose of this note.

Our main result, Theorem 3, is the one quoted above. The first two theo-
rems, both well-known, appear here chiefly to prove the central result; and the
last two theorems, also standard, give a certain completeness to the discus- -
sion, as we shall see.

(*) Indirizzo, Dept. of Math. Chelsea College of Science and Technology, London
(Inghilterra).
(**) Ricevuto il 3 luglio 1961.
(1) G. VALIRON, Lectures on the General Theory of Integral Funcltions (Toulouse,
1923; Chelsea Pub. Co. 1949). This work appears in Chapter 2.
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We shall need the following result.

m (Ar) = 1 Cyiim [ (Ar)>Un
(1) < Az\’(/’.r) m ())
since | a, | 7 <m (r) for all values of n. (This has been taken from a paper by

Lirrrewoop and OFrForD (%), and so in essence has the proof of Theorem 2,
included here for completeness).

Theorem 1. If f(z) is of finite order 0, then N(#) = 0 (***) as 1 — oo,
for every e>0.

Proof. If we replace » by 2r and take A = 1/2 in (1), we obtain
P ¥ s
m (1) <27, (29) .
Therefore, since m. (r) > 1 if r is large enough
2 o to et 4
(2) 2.\’(?‘) < m (2,).)

for sufficiently large values of r. But from Cauchy’s inequality, m (2r) < M (2r)
and so
N (1) log 2 <log M (2r) = O (r**¢).

The result follows at once.

Theorem 2. 1If f(z) is of finite order o, then for eirery e >0,

M(r) = 0{" m(r) }
as 7 — oco.

Proof. Let k= N (2r). Then

M@r)<>|a,|m
0

[2e]
[a‘n l o z l a, l rm,
k41

21+, say.

I
cMw

I

(*) J. E. LrrrLewoop and A. C. Ovrorp, On the distribution of zeros and a-values of
a random iniegral function (II), Annals of Mathematics 49 (1948) 885-952.
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Since no term in >, exceeds m(r) and there are k -+ 1 terms,
So< (B +=1)m ().
Consider »,. Making use of (1), we have

| a, | @20 <m (2r) <2Fm (r),

and this gives us

| an ] rm <28 (7).
‘We find at once from this that

22 < 2Fm (1) 3: 2=n = m (r).

k41
These inequalities for >; and 2, give

3 o )<k +2)m (),

and since by Theorem 1, k = O (1?7°) as r — oo, the result now follows.

Lemma. (i) Suppose that @ (#) is convex for # >0 and that for a se-
quence of values of « tending to infinity, @ ()<< K x where K is a constant.
Then @ (#)< K for all sufficiently large values of .

(ii) If @ () is convex for z >0 and if 7! @ () — oo a8 & — 00 through
some sequence of values of , then ! @ () - co as # — oo without restriction.

Proof. If & (x)< K, and @ (#,) < Ka, it is easily seen that @ () <
< Kx between @, and w, in virtue of the convexity. From this, (i) follows at

onee.
Tn (i), if =1 @ () does not tend to infinity, there must be a constant K

and a sequence (z,) tending to infinity such that @ (x,) < Ke,. By i), @ (z)<
< K for all large values of », thus contradicting the hypothesis in (ii).

Theorem 3. If f(z) is of finite order, log M (r) ~ log m(r) as r tends to
infinity.

Proof. Let g by the order of f (2). Since m (ry < M (r)y and in virbue of
Theorem 2, it is easily seen (?) that for any ¢ >0 "

logr logm (1) _
Tog 3L (1) “log M (r)

) 1— (g +¢)

() It is worth remembering at this point that since ¢ is arbitrary, the constant im-
plied by the O in Theorem 2 may be taken to be unity. '
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if » is large enough, depending upon e. We shall consider separately the two
cases 0 >0 and g = 0.

Suppose first that p > 0. We shall show that log r/log M (r) = 0 as r — oo,
which together with (4) will prove that log m (r)/log M (r) — 1. Let & be chosen
$o that p— & > 0. For a sequence of values of 7 tending to infinity,

log M (r) >0~

(an elementary property of the order), and therefore log M (v) / log r— co
a8 1 — oo through this sequence. But by HADAMARD’S three circles theorem (%),
log M (r) is a convex function of log #; and so by Lemma (ii), log M (r)/log+ — oo
as # — oo, which is what we require.

If o = 0 we can see from (4) that, since ¢ may be as small as we please, it
is sufficient to show that log r/log 3 (+) is bounded as r — co. If it is not
bounded, there is a sequence of values of » tending to infinity for which

- log M (r)logr<<1/2.

(This is true with any positive number on the right-hand side; for our purpose,
any number less than 1 is sufficient). But by Lemma (i), and again appealing
to the three circles theorem, this inequality holds for all sufficiently large values
of . Thus as r — oo, M () = O (r*), and consequently (%) f(2) is identically
constant. Buat in this case, Theorem 3 is trivially true and therefore the
result is pro ed completely.

Now consider a familiar example, finding the order of the function

©

gr) =Yz (n)™" =

[

=8

Hn B™
If we use Stirling’s formula, we can easily see that if » and r are large,
log p 1 ~an— o (n + 1/2) log n— n log 7.
This is a maximum when % ~7'*; and so in this case,
log m () ~ ortl®,

From this we may deduce that the order of g (¢) is 1 for.

(*) See for example, E. C. TrrcuMarsu, The Theory of Functions, 2nd Ed. Oxford
1949, § 5.3. ‘ : .
(®) Trrcunarsw, ibid., § 2.52.
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To justify this argument we need to know two things. Firstly that & (») is
large when 7 is large, so that the use of Stirling’s formula is legitimate; and se-
condly, that if log m (v) = O (#*) for a fixed %, f(2) is of finite order so that we
may infer the magnitude of M (r) from that of m (r). Both of these propositions
can be proved easily with the material at hand.

Theorem 4. N (r)is an increasing function of ». Unless f (2) is a poly-
nomial, N (r) - co as 7 -»> oo.

Proof. From (1) we have for all »
| @, | (Ar)r <m (Ar) < A% m (v)
and so
| @, | < 234" m (7).
By -putting-n- == N-(r); we-obtain
}»Z\’(ZT)-—N(') > 1 ;

and so if A >1, N (&) > N (r). Thus N (r) is an increasing function of r .

Suppose now that N (r) is bounded; & (+) < 4, say. Since the Taylor coef-
ficients (a,) are clearly bounded, m (r) = O (r*); and then from (3), which is
true whether the order of f (2) is finite or not, M (r) = O (»%). This shows that
f (#) is a polynomial and so completes the proof of the theorem.

Theorem 5. If logm (r) = O(r¥) as » — oo, where k is some constant,
f (2) is of finite order.

Proof. From (2), which is true of all integral functions and does not
pre-suppose that the order of f (2) is finite, NV (#) = O (#%). If we substitute this
into (3), where £ = N (27) = O (r*), we find log M (r) = O (#*) thus proving that
the order of f (2) is finite.






