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A Creep Law for Strain-hardening Materials and
its Consequences Particularly under Conditions

of Primary Creep. (*%)

1.~ Introduction. o

The bases for a study of creep deformations in structures at constant tem-
perature are gross hypotheses, which lead to constitutive equations relating
stress, strain and strain rate. Often these equations are specialized into « power
laws » to simplify the approach to special problems; but such specializations
do not always lead to satisfactory predictions. Here some results are sought
of fairly general character.

A group of hypotheses is accepted throughout the paper:

(i) Only «small» deformations are considered: so that an appropriate:
measure of strain is

1
(1.1) €; =3 (u,; +u,,)

ur; components of displacement from a natural reference state); also, the
3 P g 3 3
strain rate is given by

de;; 1
— = (’D—%—-U)
de g R T

(ve, components of speed).

(*) Ind.: Nelson Research Laboratories, English Electric Co. Ltd, Stafford, In-
ghilterra.

(**) Ricevuto il 12-6-1961. )

This paper was read at the Meeting on Theoretical Rheology of the "British

Society of Rheology (Reading, 20-21 April 1961). : - B
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(ii) The strain is thought of as the sum of an elastic and a permanent

component
{1.2) gy == &+ &g

but volume changes ave taken to be purely elastic

{e)

(1.3) ' En = Epn

(iii) The elastic component of strain is related to the stress 7, through
the classical linear formulae. In terms of the deviators

1 1

(1.4) Sy =Ty 3 Tn i1 Yi; = €57 58"" Oi;

and the mean normal values

1 ’ 1
T::T;'T;hm ngishh

those relations can be written

{1.5) s, = 2GyY, T = 3¢,
(@ elastic shear modulus, K elastic bulk modulus; ihe s mm .tion convention
for repeated indices is accepted; d;; is the KRONECKER index).

(iv) It is assumed that the stress does not intluence the permanent com-
ponent of strain directly; but rather, that proportionality exists between s,

and the rate of strain yi:

(1.6) 7/?7) = F-s,,

the coefficient F depending itself on the stress level and also on the amount

of permanent strain and, perhaps, on time.

The last hypothesis is the most restrictive of the four and is accepted mainly
on grounds of simplicity; the specification of the function F is also very cri-
tical and the problems connected with that specification will have a prominent
part in the following Sections.
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2. - Experiments of simple tension.

To illuminate the significance of the hypotheses of Sect. 1, let us discuss
first some simple consequences.

Consider, for instance, an experiment of pure tension of a cylindrical rod:
from the point of view taken in this paper the aim of the experiment could be
said to be that of determining the solution of the differential equation

dep 2
(2.1) TN By (g, &5, 1),

which corresponds to the initial condition
(2.2) (2] 1y =0+

The conventions in writing (2.1), (2.2) are that the pull and the axis of the rod
are parallel to the third axis of reference and that F, is the determination of
I which follows from specifying levels of stress and permanent strain through
75 and 2 respeciively.

In eqn (2.1) 75 must be considered as a fixed parameter; experiments carried
out for a group of values of 15 will lead to the determination of a class of solu-

tions of (2.1) all satisfying also the initial condition (2.2)
(2.3) &y = [ (aay 1), f (T3, 0) =0.

It is interesting to note that, in general, knowledge of (2.3) does not suffice
to determine the right-hand side of (2.1); for that purpose one should know for
each value of 7;; a class of solutions corresponding to initial conditions varying
within an appropriate range. Sufficiency obtains only in special, though im-
portant cases: i. e., when I, does not depend on time or on strain. In the first
case an elementary property assures that, given a solution of (2.1), say (2.3),
a class of them can be obtained by taking

(2.4) 6;’;‘) = [ (t3, t + 1),

where 7' is an arbitrary parameter; at the same time 7, is given by

2.5) o2

= 5. H
21, Of
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provided that here ¢ -- 7' is eliminated and ey introduced using (2.4). In the
second case the procedure is even simpler: the class of solutions is

(p)

& = [ (Tasy 8) -+ B
(# arbitrary parameter) and F, is given directly by (2.5).

We conclude: Hypothesis (iv) is general enough to suit any group of (con-
sistent) results of experiments of simple tension under constant stress; in fact,
adequacy is assured even in the special cases of pure strain-hardening or of pure
time-hardening.

Experiments of tension of a rod can be carried out with varying stress: stepwise
varying stress, for instance. It is easy to realize that experiments of this type,
if appropriately planned, can provide the missing information for a full deter-
mination of F,. Alternatively the validity of the hypotheses of pure strain-
hardening or pure time-hardening could be put to test; for instance, in the

-case of tension-under stress-7 - during - the-interval-of -time-(0;-4;) - and-stregs -~

72 after ¢,, the first hypothesis predicts, for ¢ >t,, the strain

7 (1) = f (1, t—1, - 1¥)

337
[if f (v, ¢%) =1 (3, W],
and the second hypothesis

e (1) = [ (v, O—F (v, &) +f (g, b).

In these formulae f is the function defined by (2.3).

3. - Complex stress.

To study phenomena associated with complex stress distributions a new
hypothesis must be added to those put forward in Seet. 1; precisely a hypothesis
regarding the arguments that enter in the function F as measures of levels of
stress and permanent strain. General principles suggest that the invariants of
the stress deviator and of the tensor of permanent strain may be suitable mea-
sures; then the simplest assumption is that only the second invariants are in-
volved. This assumption is restrictive but expedient; its main advantage (as
we shall see presently) is that it allows an analysis of states of complex stress
on the basis of the knowledge of the function F, alone. Furthermore, simple
checks can be suggested to determine the limits of its validity. Let us state the
hypothesis explicity:
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(v) The function ¥ of formula (1.6) depends on time and on the second
invariants of s, and &% alone

(3.1) F =TI, T, 1),
D) H M_*_I_ s 3 H e _1_ (7 ()
(3.2) s =5 Sae S em T 5 B G

Note that, because of hypotheses (ii) and (iii), /7, , can also be written

e (p)

o 'r[s Yuk: Shr i1 1
(3‘)) Hs m = H}’ + 4G + _—EEI’“ ’ with Hr :——2_ Vi Vit

From formula (2.1) it follows immediately that

] _— 4
(3.4) Py, 11, t) = Py (’\/—_ 311, V__ 3 g, t) i

such simple identity would not hold, of course, if # were to depend also on
the third invariants of s,; and &} . In fact in that case knowledge of I, would
not suffice for a complete determination of F.

Hypothesis (v) has another striking consequence: deformation under cons-
tant complex stress can be described in terms of the function f of formula (2.3)
alone. In fact, when the temsor s, is constant its components appear in the

differential system

23

dpt?)
(3.5) _ﬁf =PI, I, 1)s;
as mere parameters. By putting
(3.6) Y2 8) = s, T' (1),

all equations (3.5) reduce to a single one in I”

%]l: = F (11, F2]-7s7‘t)a
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which can also be written by (3.4),
a (]/ ~ 1 1’)

di

[ &)

S [— /T4 ;
== = ’\/——N 3]73 101 (‘\/“‘ SHS, !/ “’“T‘i Hs ]", t) .

L

But this equation coincides with eqn (2.1); only the names of the quantities
which appear in it have been changed. It follows that the solution of (3.5) which
satisfies the initial conditions y® (0) = 0 is given by

(3.7) Yo = (-~—-~ F(V ==30,, 1).

This result (together with a parallel one which predicts a correlation between
phenomena of uniaxial and complex stress relaxation) could be used to assess
the validity of hypothesis (v).

4. - Dimensional considerations. Primary creep.

Fomulae (1.6) and (3.5) are not in a dimensionally invariant form; we in-
tend to modify them appropriately here, introducing three material constants.
In theory one could perhaps envisage bodies devoid of such constants (apart
from the classic moduli), whose behaviour could be deseribed on the basis of
hypotheses (i) to (v): then the function F would necessarily have the form

IR
(£.1) [ (6} » 11, (n)> .

FHowever, experimental evidence seems to justify rather the view that material
constants exist. For instance, because the microscopic mechanism of creep is
completely unrelated to that which causes the elastic response, it seems rea-
sonable to assume that one of the constants, Y say, has the dimensions of stress.
If the peculiar time-dependence (4.1) has to be avoided (%), one time constant,
71, 18 also necessary to assure dimensional invariance; actually we assume here
that two such constants, v, and 7,, exist. The reason for this complication lies
in the fact that the dependence of # on time is there to represent thermal instab-
ility of the microscopic structure, a phenomenon concurrent with, but largely
independent of, creep under stress. :

{(*) Though there are many examples of «logarithmic » creep; one such example
was illustrated by P. FELTnAM at the meeting. :
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In conclusion we specify the dimensionally invariant form of eqn (1.6) as
follows

dy\? 1y 1 84
4.2 R = — ==
(+2) di ()."3 o 1L, 1.) 7, ¥

It appears then that strain-hardening effects will predominate over time-
hardening effects, at least during the first stages of creep, if v, is much larger
than 7, . We intend hereafter to concentrate our attention on that case and we
begin by suggesting a specification of the function ¢, valid when the permanent
strain is small. It is usual in similar cirecumstances to introduce a development
in power series; but such procedure would imply regularity of ¢ in the neigh-
bourhood of 7, == 0. It seems more advantageous to assume in our case that
G is singular for [7,,, = 0: more precisely (on grounds of simplicity) that ¢
has a pole of crder one at [/, ,=0

e (p)
(I !
G (ﬂy, ., ;) O

(4.3) for
1
——=0,11 ,— 0.

Ty ¢
This conjecture may appear rather arbitrary; hence an indication of its im-
plications in some simple cases may be in order. Because the consequences of
(4.3) will be discussed in some detail in the next Section we consider here only
the case of tension of a rod. In that case, with the conventions of Sect. 2, one
has

5
M
de 8 3Y 2> Tys

a9 [P X

o _ [ S g (7)1 <—"~)ls3
= gr M (3):'2)] Y

and hence

- a formula which expresses the Andrade-Orowan law of primary creep. Because
of this coincidence we will rvefer henceforth to assumption (4.3) as pertaining
to conditions of primary creep (2).

(*) See, for instance, the papers: A. H. CorrreLL, The Time Laws of Creep; A. J. Kux-
NEDY, On the Generality of the Cubic Creep Function, both in J. Mech. Physics of
Solids, 1, (1953), 53-63, 172-181; there, experimental evidence in support of the An-
drade-Orowan law is quoted and possible mechanisms for primary creep are suggested.
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5. - Primary creep under complex stress.

In the restricted form=lation suggested in Sect. 4 the complete constitutive
equations for an elastic body subject to primary creep are

IT,
M—=
1;/11 1 dé‘i,- ¥ Sis
(5.1) = 3a “'" Ty
a 2¢ i 1T - I, ywsmt, ¥
v T T eg
T
Y e

To tackle a problem of creep deformation, these equations must be consi-
dered together with the indefinite equations of equilibrium of continua and the
correspondmg boundar y conditions. Initial conditions are also required; usually
the elastic deformation can be considered as instantaneous: hence one may
assume

1

(5.2) (Viidemo = 51(‘; (Si)i=0r (€)1mg = 3K ..

Of course, in special problems no mention is made of some of these equations,
either because they are obviously satisfied or because they are tacitly assumed
to be. Such is, for instance, the case when constant and uniform complex stress
is discussed, as in Sect. 3. About that case we may remark here incidentally
that during primary creep the function I" (¢) which enters in formula (3.6) m‘by
be specified as follows

(5.3) I'(@) = {-11;7;: M <,. I;:) }‘/3 (é)l/"’

leading to a generalized ANDRADE-OROWAN cube-root law.

In general the solution of eqns (5.1), (5.2) and of the associated equations
of equilibrium present grave analytical difficulties: in fact, the mere explicit
statement of the initial conditions (5.2) requires in general the solution of a
non-trivial problem within the classical theory of elasticity. We want to show now
that the general problem itself can be reduced to another one which is of the
type of those discussed within that theory; an approximation is involved in the
process, which seems, however, clearly justified in this context.
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Let us take for the components of stress and strain the developments

1\ 1\1fs
o H 3 i — I # . .
v, =A, + B, (;) . =4 + B (?) RN
(5.4)
1\1/3 t\1/3
5,=C, + D, (_) T t=C+D (—> FI
Ty Ty

where 4,;, €, 4, C are functions which describe the initial elastic distribution
of strain and stress.
Introduction of these expansions (5.4) in eqns (5.1), yields for B,,, Dﬁ,' B

and D the conditions

Taking the second invariants of both members of the first of these equations
one obtains

th : 6 H{' o2 /3.
> <Bmf“ 57;) = ['1; M <— V) ] (—2 IT)";

hk

hence one has the system

>

T 3K

These relations are parallel to the linear stress-strain relations of the theory
of elasticity [cfr. eqns (5.2)], except for the non-homogeneous addendum depen-
ding on C,;. Actually a term of that type appears also in the classical theory
when account must be taken, for instance, of concurrent phenomena of thermal
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expansion. Of course, the tensor D, 4 6,, ;D must also satisfy Cauchy’s equa-
tions of equilibrium together with a‘ppl opua.te boundary conditions; hence the
process for determining B, ; and B does not differ substantially from the sol-
ution of a purely elastic problem.

Once B, B are known, our original problem can be considered solved,
because the first time-dependent term in expansions (5.4) is the only one which
seems worth determining in view of the hypothesis accepted at the beginning
on the constitutive equation.

There are many cases where the suggested process can be applied usefully;
elementary examples are the problems of the bending of a har, the torsion of
a shaft, the expansion of a tube under pressure.
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Sunto.

Si propone wna equazione veologica di stato per la descrizione di fenomeni di scorri-
.mento ¢ se ne ricavano consequenze (valide per scorrimento primario) che generalizzano
leggi ben note (la legge della radice cubica di Andrade-Orowan, ad esempio).



